The future for theory

The talk.....

- Conclusion: the future for theory is bright

 nothing is so useful as a good theory
- Illustrations from
 - Foraging behaviour
 - Population ecology

Some research goals

- Connect population dynamics to foraging behaviour (via diet selection and intake)
- Examine consumer responses to resource abundance and spatial distribution
- Predict impact of herbivores on vegetation

1. Foraging behaviour:

Functional response

Abstract

Reality

lvlev

Spalinger-

Hobbs

$$B_1 = \frac{V_{\max} WD}{(1 + hV_{\max} WD)}$$

Bite optimisation & diet selection **Daily intake** Patch use Range use

Spalinger-Hobbs Functional Response

<u>Time taken per bite:</u>	Process 1:	$T_1 = h + \frac{1}{V_{\text{max}} WD}$
	Process 2 :	$T_2 = h + \frac{1}{V_{\text{max}} \sqrt{D}}$
	Process 3:	$T_3 = h + \frac{S}{R_{\text{max}}}$
		V = WD
<u>Hence, bite rate:</u>	Process 1:	$B_1 = \frac{max}{(1 + hV_{\text{max}} WD)}$
	Process 2 :	$B_2 = \frac{V_{\max} \sqrt{D}}{(1 + hV_{\max} \sqrt{D})}$
	Process 3:	$B_3 = \frac{R_{\max}}{(S + R_{\max}h)}$

Spalinger-Hobbs functional response

How biomass gets depleted

bites get more scarce.....

bites get smaller.....

Browsing by roe deer

or any model herbivore....

1. Bite optimisation

2. Optimal diet

3. Patch use

Browsers are probably governed by Process 3

Linear gain function is predicted for S-H functional response

Roe deer gain functions are virtually linear

Getting from short-term intake rate to daily intake

- Involves crude use of 'constraints'
 - grazing time ≤ 10 h
 - digestive capacity
 - capacity to use nutrients
- represented as inflexible maxima
- seems to work OK.....but we need a better theory

Movement patterns and prediction of localised impacts

- Phenomenological: Matching rules (IDF) +/suitability factors
- Probabilistic: combines factors such as forage, environmental social etc (HOOFS)
- Mechanistic: Pacman (Derry)

Summary - Foraging behaviour and Intake

- Achievements:
 - Bite optimisation (inc digestive constraints)
 - Short-term intake rate
- Progress needed:
 - Diet selection at botanical scale
 - Daily intake
 - Patch use
 - Modelling movement patterns and space use is still rudimentary

2. population ecology

The 'New Rangeland ecology':

'Frequent droughts cause mortality of herbivores without having much influence on vegetation, leading to a decoupling of plants and herbivores' (Galvin & Ellis 1996). Accordingly:

'... degradation in non-equilibrial environments is limited, as livestock populations rarely reach levels likely to cause irreversible damage' (Scoones 1994).

- a new theory of rangeland dynamics

Theory: Livestock populations exploit spatial variation in resource abundance and are dependent on 'key resource' areas during the dry season.

Variable climate \rightarrow disequilibrium **Vegetation** Rain Animals Years

What *is* nonequilibrium?

- Nonequilibrium = anything not at equilibrium (including disequilibrium)
- A metaphor for the complexities of human existence under environmental variability

Perception of nonequilibrium is a scale-dependent

What is the effect of resource heterogeneity on animal population dynamics?

relative roles of wet/dry season resources
strength of plant-animal coupling to different resource types

Method

- Simple animal-plant model to capture the main features:
 - starvation-induced mortality
 - state-dependent reproduction
 - carry-over of body reserves between seasons
- Distinguish wet season range from dry season range (WSR, DSR)

Dry season range

Definition:

Key resources are those related to the key

factor

- Key factor determining livestock population size is survival over the dry season
- Key resources (KR) are those eaten then
- Reduction in KR reduces livestock numbers, and vice versa
- Animal population is in long-term equilibrium with KR

What *is* nonequilibrium?

- Nonequilibrium is the absence of coupling between the animal population's dynamics and the subset of resources <u>not</u> associated with key factors
- Hence, distinguish KR from nonequilibrium resources (NR)

Key resources

Nonequilibrium resources

Supplementary feed

Long-term mean animal abundance given two resource types (model of Illius & O'Connor 2000)

	Prime resource	Secondary resour	ce
Digestibility			
Live	0.7	0.7	
Dead	0.4	0.2	
<u>Area (ha)</u>	1000	1000 10000 log _e N (sd) 5.2 (0.57) 6.6	0 (0.26)
	100000	9.5 (0.59) 9.9	(0.57)

Conclusions

- Herbivores are in long-term equilibrium with KR, and only weakly coupled to other (=nonequilibrium) resources
- The mix of KR and NR resources is common to all heterogeneous grazing systems, regardless of aridity, climatic variability or management system
- Herbivore impact on NR depends on the relative abundance of KR, because these limit animal numbers

