What environmental indicators can (and can't) do

Or nine lessons and no carol

Prof. David Briggs Small Area Health Statistics Unit Department of Epidemiology and Public Health Imperial College London

An Indicator

Numbers of Internet sites providing indicators, by year

The need for indicators Public information and policy:

- Accountability costs and performance
- Liability legal
- Transparency open to scrutiny
- Subsidiarity action at right level
- The nature of the problems:
- Complex needs simplified (yet comprehensive) information base
- Cross-sectoral needs means of communication and negotiation

Trans-national – needs concerted understanding and actionand, of course, fashion

What do indicators indicate?

Latin - Indicare:

to point or indicate

An indicator is something that points from one place, or one thing, to another

A definition

An indicator comprises a characteristic or condition which can be described or measured in a way that provides information about some other characteristic or condition which is, itself, not amenable to direct observation or measurement

How indicators indicate

Causal: The indicator causes (or is caused by) the target

- CO₂ emissions for global warming
- asbestos exposures and asbestosis

Component: The indicator is a major component of the target (or vice versa)

- indicator species for plant assemblage
- methane and hydrocarbon emissions

Conditional: The indicator is a precondition for the target (or vice versa)

road length and traffic volume

Correlation: The indicator is statistically correlated with the target:

deprivation and lung cancer

carbon diovide concentrations and narticulate concentrations in

Indicators thus consist of two elements: the indicator itself (determinand) and the target (the thing it indicates)

Unless we understand the link between the two, we cannot interpret indicators

Wild bird populations

What does the indicator actually tell us – apart from trends in bird populations?

Coarse fish catches

Are fish population increasing? Are fish populations maturing? Are rivers better stocked? Are fishermen getting more skilled? Have fishing technologies improved?

Complaints about noise

Are the dark areas noisier?

Or are complaints facilities better?

Or are people more sensitive?

Or do they each contain a few frequent complainers?

Interpreting indicators: road traffic fatalities in the EU

Are roads safer? Or car drivers better protected? Or have pedestrians and cyclists just been frightened or forced off roads?

Linkage is all!

Indicators can show patterns and trends (within the limits of accuracy of the data on which they are based)....

But they do not provide explanations of those patterns and trends (except in relation to the inbuilt assumptions about their linkage)

The problems of linkage

- Many-to-many, not one-to-one
- Dynamic not static
- Associations are heavily confounded
- Many associations are conditional, circumstantial and scale dependent
- Many associations are probabilistic, not absolute

Indicators that encompass linkage may better reflect reality (e.g. measures of risk) – but difficult to compile and often impossible to measure

So does having families (sets/clusters) of indicators help?

Indicator Frameworks

The need for a framework:

- To provide structure for indicator sets
- To help ensure that key factors are covered (check-lists)
- To help identify proxies
- To show linkages and interdependencies
- To show implications of changes in indicators
- To aid interpretation
- To help target actions and interventions

The P-S-R Framework

damage

The DPSIR Framework

Driving force		Action
Transport	Strong	Transport policy
Agriculture	Strong	Agricultural policy
Industry		Regional policy
Energy		Energy policy
Pressure		
Waste release/emissions	Medium	Emission limits
Land take		Planning guidance/control
Landscape modification		00
State		
Pollution	Weak	Quality guidelines/standards
Habitat loss	4	Habitat designation
Hydrological adjustments		Monitoring
Climate change		Remediation
Impact		
Biodiversity		
Landscape quality		
Human health		

Formal frameworks – the limitations

PSR, DPSIR and DPSEEA widely used, but
Too linear – do not reflect many-to-many relationships or feedback

- Too static do not reflect flows and changes
- Do not work well for some issues e.g. natural hazards, social/occupational risks
- Do not provide real basis for tracing effects back to causes
- Difficult to distinguish clearly between D, P and S in some cases
- Position in DPSIR chain depends on perspective (e.g. traffic flow, grazing intensity)

Lesson 2

Linked sets (families/clusters) of indicators are usually better than single indicators.....

they provide a fuller picture, they provide robustness by triangulation, they imply interdependencies

So structures such as DPSIR or causal webs help

But interpreting covariation in indicators as evidence of cause and effect is dangerous....

Associations are highly confounded, partial and often incidental

Can they be measured?

One site – JRC sustainable development indicators

Air Pollution	Emissions of nitrogen oxides	Emiasiona of non- methane volatile	Emiaaiona of aulphur dioxide	Emissions of particles	Consumptio of gasoline & diesel	Primary energy consumption	Emissions of ammonia (NH3)	Emissions of selected persistent.	Use of peaticides for agricul	Electricity consumptior
Climate Change	Emissions of carbon dioxide	Emiaaiona of methane (CH4)	Emissions of nitrous oxide	Emissions of chloro- fluoro	Emissions of nitrogen oxides	Emissions of sulphur oxides	Emissions of particles	Removala of carbon dioxide	Emissions of non- methane volatile	Emissions of hydro- chloro- fluoro
Loss of Biodiversity	Protected area loss, damage	Wetland loss through drainage	Agriculture intensity: area used for	Fragmen- tation of forests &	Clearance of natural & semi	Change in traditional land	Loss of genetic resources - non	Peaticide uae on Iand	Loss of forest diversity 	Riverbank Ioss through artificiali
Marine Environment & Coastal Zones	Eutrophi- cation	Overfishing	Develop- ment along ahore	Priority habitat Ioss	Diachargea of heavy metala	Oil pollution at coast & at sea	Diachargea of halogenated organic	Wetland Ioss	Touriam intensity	Faecal pollution
Ozone Layer Depletion	Emissions of bromo- fluoro	Emiasions of chloro- fluoro	Emissions of hydro- chloro- fluoro	Emissions of carbon dioxide	Emissions of nitrogen oxides	Emissions of chlorinated carbons	Emissions of methyl bromide.	Emissions of methane (CH4)	Emissions of nitrous oxide	Emissions of methyl chloro
Resource Depletion	Water consumptio per capita	Use of energy per capita	Increase in territory permanently	Nutrient-bal of the aoil (nutrient	Electricity production from foasil	Timber balance (new growth/	Use of mineral oil as a fuel	Surface water abstraction (for	Exceedance of fish catch quota	Ground water abstraction for
Diaperaion of Toxic Subatancea	Consumptio of pesti- cides by agriculture	Emiasiona of persistent organic	Conaumptic of toxic chemicala	Index of heavy metal emissions	Index of heavy metal emissions	Emissions of radioactive <i>ma</i> terial	Emissions of heavy metals by	Production of chlorinated compounds	Consumptio of household toxic	Vehicle distribution by technology
Urban Environmental Problema	Energy consumptio	Non- recycled municipal waste	Non- treated waatewater	Share of private car	People endangered by noise emissions	Land use (change from	Inhabitanta per green area	Water conaumptio per capita	Emissions of sulphur dioxide	Derelict areas
Waste	Waste Iandfilled	Waate incinerated	Hazardoua waate	Municipal waste	Waate per product during a	Waste recycled/ material recovered	Waste from other economic	Consumptio of hazardous materials	Waate from energy production	Waate diapoaed to aea
Water Pollution & Water Resources	Nutrient (nitrogen phosphorus	Ground water abstraction	Pesticides used per hectare	Water treated/ water collected	Index of heavy metala emiaaiona	Emissions of organic matter	Industrial water uses	Waste water collected/ water	Households & public utilities water	Water recycling by industry

Air quality monitoring networks: EU

Figure 2.1a: Air quality automatic monitoring sites in operation, United Kingdom. June, 2002

Monitoring networks: UK

Uncertainties in emissions estimates

Revisions to reported nitrogen oxide emissions (UK)

Accuracy: industrial waste generation

Country	ERL	Eurostat	OECD	Range (x)
Belgium	-	8,000	26,700	3.4
Denmark	2,304	1,317	2,400	1.8
France	50,000	50,000	50,000	1.0
Germany	205,717	55,932	61,424	3.8
Greece	-	3,904	4,304	1.1
Ireland	1,962	1,580	1,580	1.2
Italy	43,950	35,000	39,978	1.3
Luxembourg	1,961	135	1,300	14.5
Netherlands	6,200	3,942	6,687	1.7
Portugal	-	11,200	662	16.9
Spain	12,000	5,108	5,108	2.3
UK	71,315	50,000	50,000	1.4
(Eng/Wales)				

Exposures to SO₂ exceedances in the EU

The message depends on the data.... their accuracy.... their representativeness their comparability Data availability and quality are inescapable constraints

Enhancement can be the enemy!

As monitoring (and modelling) develop and improve, data (and indicators) often lose their consistency...

The land cover map problem!

Traffic accidents

Waste disposal

The message depends on the denominator... (and the level of aggregation).... So we need to frame our questions carefully, and build the indicator accordingly

And, incidentally, maps lie!

Will they be used?

How can indicators be used?

- To support scientific enquiry and predict new issues
- To determine policy responses and priorities
- To monitor policy effectiveness
- To inform the public
- To decide on monitoring needs
- To name and shame
- To lobby

Determinants of utility

- relevant to an issue of policy or practical concern
- actionable related to conditions that are amenable to influence/control
- understandable by and acceptable to those at whom it is addressed
- timely up to date
- specific targeted at an explicit phenomenon or issue
- cost-effective capable of being constructed and used at acceptable cost

The information chain

Indicators and policy: the information-driven view

Indicators and policy: the policy-driven view

Deceits and distortions

The indicator becomes the goal (e.g. hospital waiting lists, school rankings)... So policy becomes self-serving

Indicators determine monitoring needs....

Since we manage what we monitor, policy thus becomes inward-looking and self-constrained

Lessons 5-9

5. What separates indicators from data is that they are targeted at a question

So most indicators are use (and user) specific

6. Indicators only tell you what the world is (or was) like, not how it will be

So indicators can't look forward (they do not provide foresight)

- Indicators are difficult to interpret (because of confounding etc) So scientific analysis is needed to verify any apparent trend or attribute it to cause
- 8. Policies change and thus so do the needs for indicators

If indicators drive monitoring, then monitoring will be at the mercy of transient interests – and long-term data sets will rarely be maintained

9. Indicators rely on routinely available data, but routine monitoring cannot be designed to serve all the different indicators that might

How can indicators be used?

- To support scientific enquiry and predict new issues
- To determine policy responses and priorities
- To monitor policy effectiveness
- To inform (and misinform) the public
- To decide on monitoring needs
- To name and shame
- To lobby

What indicators can do

- Summarise though are they adding to, rather than reducing, problems of information overload?)
- Synthesise but rarely, meaningfully, to a single index
- Simplify but also obscure
- Select (prioritise)
- Speak (communicate) especially on behalf of those without a voice
- Stimulate in the hands of impassioned people

What indicators can't do

- Avoid (or reduce) the need for data (in fact they add to it)
- Determine or drive monitoring needs
- Answer questions we don't ask
- Address questions they are not designed for
- Predict and provide foresight
- Replace foresight and good science
- Select what matters (who does define the issues?)
- Avoid the need for thought

Conclusions

- Focus on establishing and maintaining monitoring and surveillance systems that can provide a wide range of policy-relevant data on a routine basis
 - Indicators can then be developed (and discarded) according to need (not used as a comfort-blanket)
 - The data provide a resource for policy-based enquiry
- To provide this 'policy-based enquiry', establish scientific systems that can analyse and interpret these data quickly and effectively:
 - To give early warning of new problems
 - To take account of emerging scientific knowledge
 - To assess and respond to new policy issues