Environment – Land Use and Rural Stewardship

WP 3.5 MANAGEMENT TO ENHANCE WATER QUALITY

"should lead to effective policy and guidance on the management and enhancement of water resources and water quality, under present and future environmental conditions, focussed by an understanding of stakeholder needs and economic cost

"helping decisions happen"

PROCRAMME3-

-

Shared Perspectives

Reconciling multiple pressures

NO BIKES

MILL POND REGULATIONS

2004/01/07

2004/01/07

1. Set standards of Good Ecological Status (GES) based on best science evidence

2. Effectiveness and Cost:effectiveness analysis (CEA) to prioritise measures

3. Does end user shows cost resistance ? -> assess disproportionality through Cost Benefit Analysis (CBA) etc.

Effective solutions - examples

1. Loch P mitigation

HARD CONTRACTOR CONTRACT

P Standards for Good Ecological status (GES) from regulator

Prediction of P status of water bodies

source apportionment of current P loads to 500 Lochs (and 3000 rivers)

Likelihood of [P] exceedance for lochs (and rivers)

P loading reductions needed for GES

P Mitigation measures

National scale land use and sewage inputs

•Mitigation cost curves for managed Grass, Arable, Upland, Septic tank and Sewage treatment works P

Mitigation cost minimisation across sources

Analysis of costs, disproportionality and uncertainty

PROCRAMME3-

Interim approach to loch values

PROCRAMME3-

Load reductions and costs

Mitigation Cost to achieve 80% likelihood of good P status for rivers (40 ug/L)

Mitigation cost curves – eg DEFRA, Scottish Best Management Practices Handbook

1. Loch P mitigation

PROCRAMME3-

Regulator's Good Ecological Status Current predicted status 100 90 Marginal 80 Loch value 70 60 £/kg P 50 40 30 Marginal **Cost of** 20 mitigation 'ECONOMIC' 10 ESTIMATE OF OPTIMUM" 0 10 15 20 25 30 5 1. Loch P mitigation Loch Earlston Loch [Total P] ug/L

Environmental Economics of Lochs

PROCRAMME3-

Disproportionality analysis for Loch P mitigation

PROCRAMME3-

Monitored priority catchments

5 subcatchments monitored for turbidity, chemistry

Lunan: Monitored Priority Catchmen

1. Loch P mitigation

1. P mitigation: POLICY IMPLICATIONS :

There is potential for proportionate spend on P mitigation of Lochs

More difficult to justify for rivers because multiple stressors control ecology and ecosystem services

Need more local validation of cost:effectiveness

2. Pathogens: risk assessment

Benefits and costs

Bathing waters project costs data Benefits transfer from E and W to Ayrshire

Sources

Apportionment using faecal sterols Variation in space and time

Transport and attenuation

Mitigation using ponds/wetlands bacteria-colloid interactions

Doses and responses

Role of mixing Quantitative risk assessment

Risk of enteritis from bathing at Irvine Beach

2. Pathogens: risk assessment

Johnstone, Moran and Vinten, 2007

Frequency distribution of E.coli O157 in leachate from individual faeces (cells/100mL)

Role of mixing in risk of infective dose

Enhancing Water Quality

Log(dose)

E.coli-colloid interactions

Flow cytometry measures Particle size, complexity, And fluorescence

E.Coli is strongly associated with colloids => Imperfect mixing

Predicted incidence of E.coli O157 infection

	source		
Assumption used for E.coli O157 mixing to estimate incidence (λ)	Aberdeenshire Private Water supplies	Ayrshire Bathing Waters	
Using frequency distribution of <i>E.coli O157</i> in faecal pats	per 100	,000(y ⁻¹)	
ie NO MIXING	29	8	
using arithmetic mean ie COMPLETE MIXING	1766	467	
Incidence of lab. isolates in humans (Reilly, 2002)	Aberdeenshire: 13.4	Ayrshire and Arran: 7	
What are the mixing rates and processes ? Vinten et al. 2008, in pres			

Pathogens: POLICY IMPLICATIONS :

Grazing livestock may be a lower risk than expected because of incomplete mixing

Mitigation not proportionate unless multiple benefits considered

© Crown copyright, All rights reserved, MLURI GD27237X 2007.

Knowledge Exchange activities

• Nutrient budgets: potential win-win situations identified on farms across catchment

3. Meeting NVZ standards:

Environmental Focus Farm and group

- Precision farming: yield and pH maps tell us how to improve N use efficiency
- General Binding Rule Audits
- Erosion risk mapping

3. Meeting NVZ standards

Economic and Water Quality Effects of the 2003 CAP Reform on Arable Cropping Systems

Bio-economic analysis of N policy

3. Meeting NVZ standards

PROCRAMME3-

N losses from average Cereal farm

3. Meeting NVZ standards

Mouriatidou, Moran, Topp, 2008

LANDSFACTS model of crop rotation

3. Meeting NVZ standards

3. Meeting NVZ standards

POSTER

POLICY IMPLICATIONS

- N mitigation may not be proportionate because:
 - Time delays leading to severe discounting
- Difficulties with stakeholder buy-in when results are delayed
 - Large scale land use change (as opposed to improved management) may be needed
 - Does this fit with need for integration and inclusivity?

3. Meeting NVZ standards

ARBROATH

Ρ

Based on DEFRA approach but:

•Lochs and Rivers covered separately

Choice experiment

•Descriptions of water quality modified to Scottish conditions

Includes morphological pressures

WILLINGNESS TO PAY for Good Ecological Status

Confidence

	£ per year	Intervals (95%)
Per ha of river catchment area	25	18 - 36
Per ha of loch water surface area	3.706	2.696 - 5.407
	Per ha of river catchment area Per ha of loch water surface area	£ per yearPer ha of river catchment area25Per ha of loch water surface area3,706

