Functional ecology of the methanotroph community

An adaptive response to afforestation of pasture in New Zealand

by Loïc Nazaries

Contents

- Background
- Aims
- Materials and methods
- Results
- Conclusions
- Future works
- Acknowledgements

Background

Methane (CH₄)

- Potent green-house gas
- Removed from atmosphere by methanotrophs (type I and type II)
- Increased oxidation in temperate forests
- Afforestation improves C sequestration in soils
 - Photosynthesis activity from trees
 - CH₄ sink from methanotroph activity
 - Slow process

Effect of afforestation in New Zealand

- Stronger CH₄ sinks in NZ
- Afforestation of pastures with pine trees ^{1, 2, 3}
- Increased CH_4 sink $\geqq C$ sequestration in soils
 - Combination of changes in abiotic (soil properties) and biotic (methanotrophs) factors
 - Methanotroph community structure
 - type I vs. type II

¹ Singh *et al.*, 2007. Appl.Environ.Microbiol. 73, 5153-5161; ² Singh *et al.*, 2009. Soil Biology & Biochemistry 41, 2196-2205; ³ Tate *et al.*, 2007. Soil Biology & Biochemistry 39, 1437-1449.

Aims of this study

- Meta-analysis
 - Compare sites with similar vegetation and response to afforestation
- Impact of long-term afforestation on:
 - Methane fluxes
 - Diversity and structure of methanotroph community
- Observe evolution of changes in structure of methanotroph population
 - Pastures vs. afforested pastures vs. long-established forests

Description of sites

Turangi

- Tongariro National Park
- Manuka-Kanuka tree forest
- Stands aged 35 and 55 years

Puruki

- Near Rotorua
- Indigenous forest (mixed vegetation)

Methane flux measurements

- Intact cores (10x10 cm) in a closed PVC chamber
- Measurement of variations in CH₄ concentration in the headspace over time, using gas chromatography (GC)

Indication on whether a soil is a source or a sink of methane

Microcosm experiment (PLFA-SIP)

Injection of 50 ppm of isotopic methane (¹³CH₄)

50 ppm

¹³CH₄

- Incubation in dark for 14 days
- Extraction of phospholipid fatty acids (PLFAs)
- Identification of active methanotroph population

Molecular analysis

- Terminal-Restriction Fragment Length Polymorphism (T-RFLP)
- Analysis of three genetic markers:
 - 16S rRNA gene of type I and type II methanotrophs
 - pmoA gene
- Production of unique fragmentation patterns (or T-RFLP profiles)
 - Observation of specific fragments called terminalrestriction fragments (T-RFs)
 - Information on the structure and diversity of the methanotroph community

Methane fluxes and afforestation

Linking community with function (PLFA-SIP)

Linking community with function (PLFA-SIP)

Methanotroph community structure (T-RFLP) – T-RF presence

Site	ртоА
Turangi	
Pasture ²	T-RF 33/129 T-RF 245
Pine forest ²	T-RF 33/129; T-RF 245
Turangi-35	T-RF 33/129
Turangi-55	T-RF 33/129

Methylocapsa spp.

(type II methanotrophs)

Methylococcus capsulatus

(type I methanotrophs)

² Singh *et al.*, (2009)

Methanotroph community structure (T-RFLP) – T-RF presence

Site	ртоА
Turangi	
Pasture ²	T-RF 33/129 T-RF 245
Pine forest ²	T-RF 33/129; T-RF 245
Turangi-35	T-RF 33/129
Turangi-55	T-RF 33/129
Puruki	
Pasture ³	T-RF 129 T-RF 245
Pine forest ³	T-RF 129; T-RF 245
Native forest	T-RF 33/129

Methylocapsa spp.

(type II methanotrophs)

Methylococcus capsulatus

(type I methanotrophs)

Disappearance of *Methylococcus capsulatus* (type I methanotroph) in old and native forests

² Singh *et al*., (2009);

³ Tate *et al.*, (2007)

Methanotroph community structure (T-RFLP) – T-RF abundance

Pasture à young forest à old/native forest *M. capsulatus* (type I) è *Methylocapsa* sp. (type II)

Conclusions

- Rapid effect of afforestation of pastures (10-35 years)
 - Methane fluxes
 - Methanotroph activity and community structure
- Establishment of a stable and active population of type II methanotrophs in forests
 - Independent of vegetation
- No differences between the old forests (Turangi) and the native forest (Puruki)

On-going works

Submission for publication

Work on Scottish soils

 Study the impact of land-use change on the CH₄ fluxes and shifts in methanotroph community structure

CH₄ fluxes in Scotland

- Effect of afforestation on methane fluxes
 - Compare methane fluxes from sites with differing land uses
 - Grassland or bog à pine forest
 - Heathland à birch forest

Effect of land-use change on methane fluxes

Acknowledgements

- PhD supervisors
 - Dr Brajesh K. Singh and Prof. Pete Millard, MLURI
 - Prof. Colin Murrell, University of Warwick
 - Dr Elizabeth M. Baggs, University of Aberdeen
- At Landcare Research, New Zealand:
 - Dr Kevin Tate, Dr Jagrati Singh, Dr Des Ross

The End

Thank you!!

Questions?