About Us
| News
| Research
| Consultancy
| Products
| Policy Support
| Education
| Jobs
| People
| Contact
|
|
||||||||||||||||||||||||||||||||||||||||
This page has been mothballed.It is no longer being updated but we've left it here for reference.
Geographic Error ModellingDatabase Creation
|
For a single viewing point a Probable Viewshed derived from the simple error model yields this image: | |
The following legend is used throughout the illustrations in this paper. A probability of 1 is associated with a dark green, which is not apparent in this view. | |
It should be compared with the binary viewshed where green indicates in-view: |
We can easily see that the locations immediately around the viewpoint has large probabilities (p = 1), but elsewhere the probability is rarely over 0.5.
This probable viewshed which only is based on the way error is reported (no more information than that is used) does not match our real-world experience as humans, although it may actually be real. If it is it means that the DEM product is dreadful, and that is not the case. The problem is that the error model is too simple. Reporting only the RMSE is not enough.
Observe:
There are a number of ways that spatial structure can be introduced into the error model. The simplest way this can be done is as follows:
This simple approach will yield error fields with appropriate mean and standard deviation and with spatial structure.
If this approach is used for error modelling, and desired spatial autocorrelation is set at 0.9 on a scale of -1 to +1 (approximately), and the probable viewshed shown here is derived.
Much of the visible area has a high probability of being seen. This seems to fit out real-world experience, but we are still making three assumptions about the error:
Thankfully, all we need to improve the error model for the 1:50,000 DEM is reported by the Ordnance Survey.
On the 1:10,000 maps they give spot heights from ground and aerial survey. By digitizing these spot heights we can compare the values with the 1:50,000 DEM values. These spot heights are:
The distribution of spot heights around the Scottish windfarm can be mapped here, as red dots on the greyscale view of the terrain :
At every location it is then possible to subtract the actual values from the DEM values to yield the error at the point.
From this error information we can generate improved location specific error statistics:
We also have the actual errors at the point, which can be mapped and described here:
From them we can examine the spatial distribution of the errors and apply advanced spatial statistics (geostatistics). We can, for example, see that similar values do cluster within the area. To describing this distribution and generating models of the spatial distribution of the errors.
Actual Error parameters for the two Scottish DEMs are:
DEM type | Mean | Standard Deviation | Maximum | Minimum |
---|---|---|---|---|
1:50,000 | 2.1003 | 6.9565 | 28 | -26 |
1:10,000 | 0.5089 | 2.6481 | 26 | -11.5 |
The 1:50,000 DEM is seen to have a very real bias in the error, and a large standard deviation. Furthermore, the histogram of the errors shows them to be approximately normally distributed. These results are not necessarily representative. Using the same basic procedure, Monckton (1994) found that the mean and standard deviation of the errors in two areas elsewhere in Britain conformed more closely to the values reported or implied by the OS (mean = 0, RMSE = 2).
The 1:10,000 DEM is more precise with a mean error of 0.5 and a standard deviation of 2 m, again with a normal distribution. This is a more precise representation of the terrain, as might be hoped in a larger scale database.
Interestingly, if we compare the error at a point with the slope of the land surface, we can see that for the 1:50,000 DEM there is a significant correlation between the two. This conforms with some ideas about how the error should be distributed. On the other hand, the errors in the 1:10,000 DEM are not correlated to the slope. There is a suggestion here that the spot heights from the 1:10,000 map may have been used in construction of the 1:10,000 DEM, and so are not suitable to test the accuracy of the DEM. If this is the case it is not reassuring to find that the error parameters are in line with those reported by the OS for the 1:50,000 DEM.
It is also possible to use geostatistics to examine the spatial distribution of the errors. Generating the variogram yields the following figure. This shows the variance between pairs of values at difference spacings, and most importantly, the normally increasing variance with spacing of data pairs. This is observable in the spatial distribution of the error in the 1:50,000 data.
To this variogram we can fit a theoretical variogram. Using the visual interface for curve fitting (Pannitier, 1996), the following diagram is the best fit.
For the 1:10,000 DEM the variogram is rather different, showing as it does no spatial structure (there is no increase of variance with spacing).
Again this sheds doubt on the independence of the 1:10,000 DEM from the spot heights.
We now have a well parameterized description of the error in the 1:50,000 DEM. The description of the 1:10,000 DEM is raising rather more questions than it is answering. If the spot heights are indeed used in creation of the DEM then they are not an appropriate set of data with which to compare the accuracy of that DEM, although they would show something of the process induced error. Rather a further survey at still higher resolution would be required.
We can use the parameterized error for the 1:50,000 DEM constructively to model the error more precisely than before.
This again can be done in a number of ways:
Sequential simulation, a process in the geostatistical toolkit can accomplish all these. It requires as input a model variogram, such as that shown above. Alternatively the method outlined above for generating spatially autocorrelated error fields can be used, and the locations of known error never changed. This increases the computation time, but improves the error model enormously.
This third version of the probable viewsheds look like this:
Looking at the union of all 48 sites identifying the wind farm, we can yield see the differences between the patterns generated by the different error models more strikingly. In this instance the elevation at the turbines is 25 m (about half way up the turbine), and the viewer elsewhere is 2 m above the ground.
The binary viewshed is shown in pink with the wind turbine sites marked by crosses: | The probability of any location being able to see the turbine masts is shown in this image, from the simplest error model (when RMSE = 2). | The probability of being able to see the mast when only the spatial structure is incorporated is shown here: |
Using an arbitrary spatial structure, but mean and standard deviation of the actual errors it looks like this: | When the error locations are also included as fixed values (the most complex error model) it probability looks like this: | |
We can see that:
In the context of wind turbines, the issue of visualization of the probable visible areas should also be addressed. An interactive visualization is shown. A representation of a turbine on one side is live and when clicked the probable area visible changes to show the area which can probably see to that height. Two different models are shown reflecting the spatial structure without actual errors and that with actual errors.
Increasing complexity in the error model has been shown.
The increase in complexity has yielded increasingly plausible results with defensible methods yielding results which show a compromise between our own world experience and the quality of the database used. In some situations the second model (with simulated spatial structure) may suffice, but only when the error parameters for the actual area conform to the description of error provided by the data supplier.
To use error estimates in developing realistic models of error so that those errors can be propagated into non-trivial spatial operations requires a complete description of the statistical and spatial distribution of the errors. The best way to do that is not for the data providers to give still more estimates of global parameters, but to provide well surveyed data points of higher precision than the database itself. Many data providers already hold those higher precision data, and merely need to make them available.
The probable viewsheds which result in this process are completely plausible. Field verification has not been attempted, but because the probability relates to the database error, and nothing in the field, it is not readily apparent how it would be done. General checks might be made that areas with high probability can indeed see to the locations described, but that is not simple, and it is not entirely clear how to evaluate the results. Verification of the probabilities awaits further investigation. In the meantime, estimation of the probabilities based on a spatially distributed model of error is essential, and at present the best method has been presented here.
Fisher, P.F., 1991. First experiments in viewshed uncertainty: the accuracy of the viewable area. Photogrammetric Engineering and Remote Sensing, 57, 1321-1327.
Fisher, P.F., 1992. First Experiments in viewshed uncertainty: simulating the fuzzy viewshed. Photogrammetric Engineering and Remote Sensing, 58, 345-352.
Fisher, P.F., 1993, Algorithm and implementation uncertainty in viewshed analysis. International Journal of Geographical Information Systems 7 (4): 331-374
Fisher, P.F., 1994, Probable and fuzzy models of the viewshed operation. In: M.Worboys (editor), Innovations in GIS 1 (Taylor & Francis, London) pp 161-175.
Huss R.E., and Pumar, M.A., 1997. Effect of database erors on intervisibility estimation. Photogrammetric Engineering and Remote Sensing, 63: 415-424
Monckton, C.G., 1994. An investigation into the spatial structure of error in digital elevation data. In M.Worboys (ed) Innovations in GIS 1, Taylor & Francis, London, pp201-211
Pannatier, Y, 1996, Variowin: Software for spatial data analysis in 2D. Springer-Verlag, New York.
Sorensen, P., and Lanter, D., 1993, Two algorithms for determining partial visibility and reducing data structure induced error in viewshed analysis. Photogrammetric Engineering and Remote Sensing, 59 (7): 1129-1132
Updated: 23 January 2024
|