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Abstract

This paper explores the applicaion of muilti-
objedive Genetic Algorithms (mGAs) to rura
land use planning, a spatia allocation problem.
Two mGAs are proposed. Both share a
underlying structure of: fitnessassgnment using
Pareto-dominance ranking, niche induction and
an individual replacament strategy. They are
differentiated by their representations. a fixed-
length genotype composed o genes that map
diredly to a land parcd's use ad a variable-
length, order-dependent representation making
alocationsindiredly via agrealy algorithm. The
latter representation requires additional breeding
operators to be defined and post-processng of
the genotype structure to identify and remove
dupicae genotypes. The two mGAs are
compared on a real land wse planning problem
and the dtrengths and weakneses of the
underlying framework and each representation
are identified.

1 INTRODUCTION

Land use planning, particularly in rurd areas, is a
spedalised spatial resource alocation probdem. The
challenge for land managers and their advisors is to
formulate  @mplex, spatidly and temporaly
interdependent patterns of land use to achieve multiple,
non-commensurable and frequently conflicting goals. It
is the neeal to be able to generate arange of aternative
land use plans, (with predictable daracterigtics), to
support the land manager in the dedsion making process
that has led the authors to explore the potential of genetic
algorithms (GAs) for land use planning tods (Matthews
et. al. 1999.

The Land Allocation Dedsion Support System (LADSS
(Figure 1) is being developed to allow land managers to
explore and evaluate dternative land use strategies,
particularly for the development of management plans to
target the ompensation for productivity foregone due to
environmental measures adopted.
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The geographic information system (GIS) provides al
spatialy referenced data, the spatial analysis functionality
required by environmental impact asessments and the
means of visualising individual al ocations. The land use
systems modules make assessments of the suitahility,
productivity and financial returns for individual parcds of
land, based on bio-physical datafrom the GIS, global and
management parameters. Data from the land use systems
modules are synthesised by the impact asessments to
provide assssnents for the whole management unit.
Financial, social and environmental impacts are
considered. The GAs are the core of an iterative system,
generating dternative land wse plans in a context set by
the land manager/advisor. This context is currently
defined by the fitness metrics used to evaluate land wse
plans. Individua plans generated by the GAs may be
visualised within the GIS as maps and spedfic features
(for example the returns generated from a spedfic land
parcd) queried within the land wse systems modules.

: Qaphic GA-Bagarl Land
mljrAgMjsy User UseHarirg
Intaface Tods

Land Manager /Advisor

Figure 1. LADSSComponents.

This paper presents a @mparison of two land-use
planning tods based on multi-obedive genetic
algorithms (MGAs). Following a review of related work
in Sedion 2, the mntrasting representations of the two
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MGASs are presented in Sedion 3.1, the features common
to bah mGAs in Sedion 3.2 and the representation-
spedfic features in Sedion 3.3. Sedion 4 presents the
experimental anadysis of the performance of the two
MGAS, with Sedion 5 summarising aur conclusions.

2 RELATED WORK

Three aspeds of mMGA design distinguish them from
conventional GAs (Davis, 1991); the neead to transform
the vedor of fitness evaluations, returned by a multiple
objedive fitness function, into the scalar value required
by a GA sdedion agorithm (Van Vedhuizen and
Lamont, 1998; the seach for a population of solutions
defining the trade-off between objedives (Goldberg,
1989 and the mGAs replacement drategy (Zitzler and
Thiele, 199).

21 FITNESSASSIGNMENT

One approach to MGA fitness assgnment aggregates
objedives into a single value by, for example, applying
weightings to individual objectives. These were regjeced
primarily due to their dependence on sewndary
information; e.g. the epense of calculating individual
objedive optima or the uncertainty in finding ideal
weighting schemes (Srinivas and Deb, 199%, Fonsea and
Fleming, 1998, Zitzler and Thiele, 1998). A further
disadvantage is that if the single solution found is
unacceptable for some reason outwith the scope of the
optimisation then the mGA provides no ather information
to help the dedsion-maker.

MGA fitnessassgnment methods based on the concept of
Pareto-optimality (Goldberg 198) are more promising.
From Pareto-optimaity is derived the dominance
relationship, with a genotype dominating ancther only if
superior in al objedives being optimised (Fonseca and
Fleming 1998). GA fitness assgnment may be
accomplished using anly genotype ranking information
(Whitley 1989 so dominance-based ranking provides a
robust means of asdgning the scdar fitness values
required by the GA. Several mGAs differing in the detail
of their dominance ranking schemes have been
implemented: MOGA (Fonsea and Fleming, 199),
NPGA (Horn, et. a. 1994), NSGA (Srinivas and Deb,
1995 and SFEA (Zitzler and Thide, 19989. The mGAs
within this paper employ rank-based fitness assgnment
using the ranking scheme of MOGA.

2.2 NICHING

Common to al Pareto-optimal mGA implementations is
the view, that, in the absence of other preference
information, there is no reason to distinguish between
non-dominated solutions. The goal of an mGA is thus not
to find a single solution but a population composed of
non-dominated genotypes evenly distributed along the
Pareto-front defining the trade-off between objectives.
To achieve the even distribution of the population across
the front, fitnesssharing (or niche induction) methods are

employed (Goldberg, 1989. Niching shares (reduces)
fitness values of genotypes within a neighbourhood
defined by the niche size (Fonsea and Fleming 1998,
Horn, et. a. 19%, Srinivas and Deb 1995.

The setting of the ratio of niche sze to population size
can be problematical and have a strong influence on
overall performance (Zitzler and Thiele, 1998). For the
MGAS presented in this paper the guidelines provided by
Fonsec and Fleming were used.

There is also disagreament on the domain in which
niching ocaurs, genotypic (parameter) or phenotypic
(fitness evaluation). Phenotypic niching is criticised as it
does not explicitly proted parameter diversity and in any
case @nnot maintain simultaneoudy in the population
different genotypes with the same function evaluation
(Srinivas and Deb, 1995. Despite this, phenotypic
niching is preferred here, as it is the even spread of
genotypes acrossthis space that the dedsion-maker cares
most about (Horn et. a. 1994).

An dternative to niche-based sharing is proposed hy
Zitzler and Thiele (1998. Zitzler's SPEA maintains a
fixed size, externa store of al non-dominated solutions
found to date. Clustering is employed, when it is
necessary to create a smaller subset of genotypes while
preserving the characteristics of the origind set (Zitzler
and Thide, 1998. While it is a flexible and arguably
superior approach to niching, the SFEA approach has not
as yet been found to be necessary for the land use
planning appli cation.

23 REPLACEMENT STRATEGY

All the mGAs (other than SFEA) mentioned so far have
employed generational replacement schemes. For single
objedive GAs, individud replacement is a common
aternative (Whitley, 1989 Davis, 1991, Matthews et. d.,
1999. While Goldberg and Deb (1991) found no
evidence for the superiority of individual replacement it
has been argued that the successful employment of
individual replacement depends on other aspeds of the
GA, such as the enforcement of genotype uniqueness
criteria in the populaion to pevent premature
convergence (Davis, 1991).

Comparison of the operation of learning classfier systems
(LCS) and mGAs makes the case for adopting an
individual (or at least ditist) replacement strategy. The
goal of mGAs is similar to that of LCS, a population of
co-adapted genotypes, LCS see&king a set of rules,
individually encoded as genotypes and mGAs seking a
population of non-dominated genotypes evenly sampling
the trade-off front. Individud replacement is the norm in
LCS as there is the reaognition that a c-adapted set of
rules is found incrementally with individual genotypes
replaced only when they cease to be fit in the context of
the aurrent population. This ditist strategy ensures that fit
individuals cannot be lost by chance with the mGA
having to rediscover them subsequently. (Vaenzuea
Rendon and Uresti-Charre, 1997)
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The strongest evidence for the success of the non-
generational approach is that when an dlitist replacement
strategy was added to existing generationa replacement
MGAs their performance was sgnificantly enhanced
(Zitzler et. d., 1999.

3 MULTI-OBJECTIVE GAs

To investigate the potential of mMGAs as land wse planning
tods two mGAs have been implemented, with contrasting
representations but sharing a @mmon underlying
framework.

3.1 REPRESENTATIONS

The two representations were developed in the mntext of
singe-objective GA-based land use planning tods
(Matthews et. al. 1999. The first representation diredly
maps the land wses of individual fields asindividual genes
in the genotype; thisis the land block representation (LB)
andisillustrated in Figure 2.

Figure 2. Land Block Representation

The genes in the second representation encode target land
use percentages with the priority for al ocating these land
uses being determined by the order in which they appear
on the genotype; this is the percentage and piority
representation (P& P) andisillugtrated in

Figure 3.

With P&P the genotype is trandated into an actua
dlocation by a second “greedy agorithm”.  This
algorithm iteratively allocates land Hocks garting with
those having the best performance per unit for the highest
priority land use. Allocation continues until either the
target land use percentage is exceaded or no land bocks
remain to be alocated. In addition to the fitness
information, the land use percentages actualy achieved
are dso fed back to the P&P GA. This is used to
eliminate parasitic (zero valued) genes and to amalgamate
gene pairs (conseautive genes with the same land wse), for
example the dimination of the zero valued whea gene,
and the two forestry genesin

Figure 3. Theserepair actions ensure that the diversity of
the P&P population is not reduced by functionaly

identica genotypes, i.e. apparently different genotypes
that result in the ssme all ocation.

P& P Genotype
Priority Land Use

. Greed
D % Allocation
Forestry
@ Forestry
Land Use Allocated Area %
P& P Genotype
Feedback 1w
Pasture from
W heat El Allocation 35
Forestry m
Forestry

Figure 3. Percentage and Priority Representation

The P& P representation ismore complex than the LB as it
has bath order-based and messy (Goldberg et. a, 1993)
features. This is refleded in the number of operators
required to support the representations (Sedion 3.3). The
representation may however, be more readily scaled as its
size depends on the number of target land use percentages
(typically less than 10 rather than the number of land
blocks (typically more than 100.

Previous work appli ed the two representations to a single
objedive optimisation in land wse planning (Matthews et.
a., 1999. Both representations found acceptable
solutions. Although the P&P GA found the solutions in
fewer leaning cycles this was offset by the alditional
computational effort required per cycle, particularly that
required for fitness evaluation. One question raised by
the paper is. does the use of an ordering function
(productivity per unit area) as pat of the greedy
alocation process result in a significant bias in the GA
search that would make the P& P representation unsuitable
for useinamGA?

3.2 SHARED mGA FEATURES

The foll owing sedion detail s the features common to bah
mMGAs with Sedion 3.3 addressng representation spedfic
features. The mGAs operation isoutlined in Figure 4.

The mGA'’s populations are fixed size and unstructured
with genotype uniqueness enforced. The enforcement of
uniqueness maintains a higher level of population
diversity thereby reducing problems of premature
convergence Population is sized based on the niche size
chosen using Fonseca and Flemings formulation (1998).

The population is randomly initidised as sandard hut
before the reproductive cycle begins the population is
doped with solutions generated from heuristics, expert
knowledge, the arrent pattern of land use or exiging
single-objective optimisations. The mGAs do not depend
on the doping but it does geead upthe seach by adding
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extreme points that can then be recombined with other
members of the popul ation.

The vedor of fitness values returned from the impact
assesgnent component of LADSS (Figure 1) is trandated
into a single sdection fitness value using the cunt of the
number of genotypes dominating an individual. The
ranking is trandated into sdledion fithess using a linea
normalisation function, providing the primary means of
contralling the rate of convergence Genotypes sharing
the samerank have their seledion fitnessval ues averaged.

Initiali se Population
Dope Population

—p Ched for Convergence
Adapt Operator Probabiliti es
Choose Operator
Seled Parent(s)
Create Offspring
— If offspring a dupli cae then delete
Insert into population
Rank population with dominance @unt
Set rank based fitnessvalues
Sharefitness

Ched if gain/no gain
Remove least fit

Reoord evaluation criteria

Figure 4. Flow chart of mGA operations.

The sdledion fithess values are shared using the
triangular sharing function (Horn et. al., 1994). Niche
size is chosen to produce an adequate visualisation of the
trade-off front (Fonsea and Fleming, 1998 while not
requiring an unmanageably large population. Sharing
takes place only between individuals of the same rank and
is peformed in the phenotypic domain with all
dimensions normali sed.

Operators are deployed using an individua operator-
based strategy with offspring genotypes being the product
of a single operator. The probability of operator
application is adapted over the course of the GA run
(Davis, 1991).

Mating redtrictions have been used for binary
reproduction to encourage the crosdreading of similar
genotypes, which is useful later in the GA run when fine-
tuning of genotypes is required. The initia parent is
sdleded using unmodified seedion fitnessvalues. Based
on distance from the first parent the sdedion fitness
values for al other genotypes are reduced proportionally
if they exceed the mating distance parameter. The
parameter should not, however, be sat too small,

especialy in the ealy phases of the GA run as it may
excessvey restrict the exploration of the search space

An individual replacement strategy is used with offspring
from operators being inserted singly into the population,
the populaion is then ranked using the dominance
relation, the fitness values shared and the genotype with
the lowest seledion fitnesseliminated.

3.3 REPRESENTATION SPECIFIC FEATURES

The omplexity of the P&P is refleded in the number of
operators required to provide appropriate eploration of
the seach space Table 1 shows the operator sets for the
two representations.

Table 1. Operator sets for each representation

Type | Land-block | Percentageand Priority
Binary | Uniform Uniform Crosover
Crossover Order Prioriti sed Crosover

Splice

Unary | Mutation Type Mutation
Non-Uniform Mutation
Pair-Swap
Insert-Gene
Delete-Gene

3.3.1 Binary Operators

Both representations employ uniform  crosover,
implemented using a crosover mask, with the crossover
proportion set to 05 to maximise eploratory power
(Syswerda, 1989. Since the P&P representation has
variable genotype length, the uniform crosover is
performed only between the initia segment of the
genotypes common to bah parents.

The P&P representation also uses an order-prioritised
crosover, (OPXO), based on uniform order-based
crosover (Davis, 1991) since permutations of the gene
order are significant. OPXO first seleds a subset of genes
using a crosover mask. Subsequently the gene subset in
each parent is reordered to the order of the eguivalent
genes in the other parent. While permutations of
component genes are important to the P&P GA, only a
subset of genes will be @mmon to the parent genotypes.
OPXO reorders the mmmon genes to their order in the
other parent genotype.

The fina P&P binary operator is splice which
concatenates two genotypes to form a double length
genotype (Goldberg et. al. 1993. This provides a smple
medhanism for increasing the number of eements in a
candidate solution. The unary operator cut usualy
complements glice but is not used with the P&P
representation as it would result primarily in partia
alocations, and these would be diminated immediately
by their inability to compete with existing completely
alocated members of the population. Reductions in
genotype length do, however, result from the dimination
of parasitic genes and gene pairs. The number of genes
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within genotypes may also be modified by the unary
mutation style operators gene-insert and gene-delete.

3.3.2 Unary Operators

For the land-block representation a single mutation
operator isrequired. This replaces the arrent value of the
land use of a gene with one thosen at random from the
remaining suitable land use options.

The more omplex P& P representation requires operators
to mutate the land use, its target percentage and its
priority. The land use is mutated by changing the dass
of the gene whil e preserving its position on the genctype
and its value. This is termed type-mutation. The target
percentage is mutated using non-uniform mutation
(Michalewicz, 1992) of the red-coded value of the gene.
The range of possble mutation values is constrained by
upper and lower bounds and a granularity parameter
carried by the individua genes. The granularity
parameter allows the acauracy of spedfication for
candidate solutions to be matched to the ability of the
LADSS to discriminate between them in its evaluation.
Initial testing has used a granularity of 5%, though finer
granularities will require eperimentation. The mutation
of prioritiesisachieved by swapping the location of a pair
of genes on the genotype.

Two additiona mutation operators change genotypes.
The insert-gene operator inserts a randomly generated
gene into the genotype providing a mechanism to increase
the number of land uses present in the land use plan. The
delete-gene operator deletes a single randomly selected
gene dlowing the promotion of lower-priority land use
percentages “blocked” from achieving high fitness
solutions by higher priority land uses.

4 EXPERIMENTAL RESULTS

The goal of the testing was to establish the relative
performance of the two representations, using a typical
land all ocation problem.

The application chosen to evaluate the mMGAs
performance was the optimisation of the pattern of land
use for a farming research station in a disadvantaged area
of the Scottish uplands. The research station comprises 90
land Hocks with 9 posshble land uses.

A two-objedive test problem was formulated with the
objedives chosen to ke typical of the non-commensurable
financial and environmenta objectives that have to be
reonciled by dedsion-makers. The financia fitness
metric was net present value, in £ over 60 years, and the
environmental metric the Shannon-Wiener index (Forman
and Godron, 1986) which measures the diversity and
evennessof land use. These two metrics were chosen as
it was known that for the particular application no single
utopian solution, best in bath objectives, would exist (a
cattle mono-culture having been found to result in the
optimum financial returns (Matthews et. al. 1999 while
scoring zero for diversity and evennesy. The mGAs

ability to find a population of Pareto-optimal land
alocations evenly spread across the trade off front
between the two ohjectives could thus be tested.

41 EVALUATION CRITERIA

To measure the dfediveness of the mGAs on the
individual objectives two criteria were recorded: the
maximum net present value for the population (MaxNPV)
and the maximum value for the Shannon-Wiener index
(MaxS-W).

The aiteria employed to compare the multi-objedive
performance of mMGAs are more complex than for single
objedive GAs with several factors influencing the quality
of solutions (Zitzler et. a. 1999). As our goa is a
population of non-dominated genotypes evenly spread
across the trade-off front, three citeria are gparent: the
fraction of the population that is non-dominated; the
evenness of coverage (bath Srinivas and Deb, 1995 and
maximising the extent of coverage (Zitzler and Thielg,
1998. Non-dominance (NonDom) is evaluated smply by
the wunt of the non-dominated genotypes in the
population. Evenness (Even) is measured by summing for
each dimension in the oljedive space the absolute value
of the difference between the expeded and actual number
of genotypes per niche. Extent of coverage (Cover) is
measured for two objedive test probems by the union of
the aeas of all the redangles formed by the origin and the
co-ordinates defined by the two objedives. All these
criteria ae evaluated online over the @urse of the GA
run. Finaly it isuseful to compare the terminal land bock
and P& P populations from a series of runsto establi sh the
degree to which the populations of one representation
dominate the other. For each land Hock population an
individual dominance (IDom) score is calculated as the
mean proportion of P&P populations dominated. The
processis repeated for the P& P populationsrelative to the
land Hock. The means of each set of IDom scores are
then used as the dominance citeria (Dom).

To investigate the dfediveness of the leaning, four
further metrics were recorded: the number of fitness
gaining events (Gain); the number of events where no
fitness gain was made (NoGain); the number of events
where reproduction resulted in an existing genotype
(Dup) and the CPU time used in each reproductive event.
The firg three provide useful diagnostics indicating how
efficiently the mGA operating. The CPU time metric
acoounts for the effort expended by the mGA and the
fitnessfunction evaluation performed within LADSS
Both require to be taken acoount of as the land-block
representation operates smply by looking up values
within LADSSwhile the P&P GA isrequired to perform
a series of more @mputationally intensive sorting
operations in additi on to the lodkups.

4.2 RESULTSAND DISCUSSION

The evaluation criteria for the two mGAs are ech
compil ed from 50 runs of the test appli cation. Both mGAs
had a niche size of 0.1 and a population size of 21. The
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mating digance was @t to 0.25. The mGAs were
terminated after 200 gaining events or 20 conseadtive
events without making a gain.

The mean values for the criteria ae tabulated in Table 2.
The differences (Diff) between the representations for
each of the metrics were a@lculated and their significance
tested (Sig). A Monte-Carlo sample-difference test
(Noreen, 1989) was used, as some of the metrics are
strongly skewed dwe to the fixed upper limit of their
value.

Table 2. mMGA Evaluation Criteria

Metric L and-block P& P Diff Sig
MaxNPV 3415 3416 -0.001 0.00
(Em)

M axS-W 2.1 2.2 -0.1 0.00
NonDom 208 | 99% | 205 98% 0.3 0.06
Cover 61 57 4e6 0.00
(10e6)

Even 17 30 -13 0.00
Dom 0.47 0.11 0.37 0.00
All 453 561 -108 0.00
Gain 200 | 44% 115 21% 85 0.00
NoGain 248 | 55% 232 41% 16 0.17
Dup 4 1% 214 38% -210 0.00
CPU (sec) 1042 1256 -214 0.00

For the individual fitness criteria (MaxNPV and MaxS-
W) the doping has ensured that bath mGA populations
have nea optima genotypes (within 1% of the known
optima). Between the representations the differences are
smal but datidicaly dgnificent, with P&P
outperforming land Hock. The difference is in the
consistency with which the mGAs find the singe
objedive optima, with the P&P representation more
consistent in thisresped.

In terms of the proportion of non-dominated solutions in
the popuation (NonDom) there is no significant
difference between the two representations. The
replacement strategy ensures that for bath mGAsit israre
for a dominated solution to remain in the population as
they are replaced first. This is desirable, as it is the
recmbination of existing non-dominated genotypes that
will ensure even coverage acrossthe trade-off front.

For the evenness(Even) and coverage (Cover) criteriathe
land Hock representation outperforms the P&P.  The
terminal land-block mGA populations aso dominate
nealy half the genotypes of the P& P populations (Dom).

The pooer evenness performance of the P&P
representation may be eplained by the use of a 5%
granularity for the target land wse percentages of the P& P
genes. While the 5% granularity was chosen as it
represented a level of detail of solution desired by land
managers, it may be necessary to reduce this to ensure
that the even digtribution of genotypes acrossthe trade-of f
front is not compromised.

The superiority of the land block representation in
coverage and dominanceis the result of its greaer ability
to find intermediate solutions. This is well illustrated by
plots of the terminal populations (Figures 5 and 6). In
these it can be observed that while bath mGAs have found
all ocations acrossthe range of the trade-off front, those of
the land Hock representation mGA are more mnsistently
concentrated closer to the Pareto-optimal front. Reasons
for this poorer performance ae apparent when the criteria
used to measure the dfediveness of the mGA leaning
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Figure 5. Terminal Land Block Populations

Figure 6. Terminal Percentage and Priority Populations

For the dfectiveness of learning the LB representation
outperforms the P&P in terms of the overall measures of
efficiency, (All and CPU). The breakdown of the erent
types, however, shows that while not significant the P&P
MGA has a lower proportion of no gain events (NoGain).
This refleds the utility of the genotype repair
medanisms. The problem for the P&P mGA is the
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number of dugdicate genotypes being creaed (Dup).
While the land block mGA is terminating due to reaching
the maximum gain event limit of 200, the P&P mGA is
terminating on average at gain event 115 as it has
exceeded the mnseautive non-gaining event limit (20).
(Note that while we differentiate between no gain and
dugicaing events for the mGA evaluation criteria bath
contribute to the count of non-gaining events that can
cause the mGA to terminate). While it would be posshle
to relax the non-gaining limit the P&P mGA would still
be less efficient. The problem of excessve numbers of
dudicaes is the result of insufficient genetic diversity in
the population due to the small size of the population.
This is particularly a problem for the P&P mGA as the
genotypes with high economic fithesswil | tend to be nea
monocultures represented by genotypes composed of one
or two genes. Thus whil e the niche size may be cosen to
provided an acceptable visualisation it can conflict with
the operation of the mGA.

It is aso posgble that the P&P mGA is auffering as a
result of sub-optima parameterisation. While the LB
mMGA with only two qperators is effective using default
singe objedive values for parameterisation the P&P
MGA with its larger number of operators may be
vulnerable. In particular the dfedivenessof the operators
used to increase the length of the genotype needs to be
established, as fitness criteria with optima defined by
larger numbers of genotypes (such as Shannon-Wiener)
will otherwise prove difficult to analyse.

5 CONCLUSIONS

This pape has presented two mGAs daring an
underlying structure of fitness assgnment using Pareto-
dominance ranking; niche induction and an individual
replacament strategy. The two mGAs are differentiated
by their representations, one using a dired mapping o
land parcds to genes and the other making all ocations
indirealy using a greedy algorithm parameterised by the
values held in the genotype. From analysing their
performance on a typical land allocation problem it was
possble to conclude that mGAs provide a useful means of
establishing the structure of the trade-off between
objedives. Both mGAs consistently found solutions close
to the individual optima pointing to the usefulness of
doping the population after initialisation with solutions
known to have high fithess values for the individual
objedives. The high proportion of non-dominated
solutions in bah mMmGAs populations highlighted the
success of the individual replacement strategy. The
poarer performance of the P&P mGA emphasises the
neel for cae when setting niche axd population sizes.
Too small a population, based on a desirable niche size,
may leave insufficient genetic diversity for the mGA to
exploit depending an the representation adopted.

Multi-objective GAs applied to rural land use planning
have significant potential for asgsting land managers in
tackling complex resource allocation probems with
conflicting non-commensurable objectives. Their ability

to search for populations of solutions defining the
structure of the trade-off between objedives not only
alows them to be used dredly as dedsion support tods
but may also dlow land managers to become better
informed about the interactions between components of
their land management plans.
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