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Abstract

Meteorological station records often consist only of precipitation and air temperature data. There is therefore a need for

appropriate methods to estimate solar radiation data to enable complete data set creation, by combining observed and estimated

data. It is important to know the quality and characteristics of the estimates made in order to understand what impacts the data may

have on the use to which they are put. This paper describes a detailed evaluation of the performance and characteristic behaviour of

two air temperature based models and one sunshine duration conversion method of estimating solar radiation, for 24 meteorological

stations in Britain. Comparisons were made using a fuzzy-logic based multiple-indices assessment system (Irad) and tests of the

temporal distribution of mean errors over a year. The conversion from sunshine duration to solar radiation produces the best overall

estimates, but shows systematic seasonal errors. The two air temperature based methods can be reliable alternatives when only air

temperature data are available. Fundamentally, the study demonstrates the value and importance of using a range of assessment

methods to evaluate model estimates.

# 2005 Elsevier B.V. All rights reserved.

Keywords: Solar radiation; Model evaluation; Meteorological data; Data substitution

www.elsevier.com/locate/agrformet

Agricultural and Forest Meteorology 132 (2005) 228–243
1. Introduction

A large number of applications require complete

weather data sets, for example, studies using simula-

tion models, which represent biological and physical

processes (climate change, hydrological, ecological

and agronomic studies). Similarly, data gathered from

outdoor-based observations and experiments may

require associated, temporally synchronised weather

data to enable suitable analysis. However, meteor-

ological records tend to consist primarily of pre-
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cipitation and air temperature, when there is an

increasing demand for data sets that also include solar

radiation, wind speed, evapotranspiration, cloud cover

etc. The dearth of even semi-complete, synoptically

synchronised weather data is a serious limit on the

application of agricultural, hydrological and ecosys-

tem models (i.e. Wilks, 1999; Hoogenboom, 2000;

Lexer and Honninger, 2004), and analysis of field

based research and experiments (i.e. Milne et al.,

2002). Missing observed individual data values can be

estimated, e.g. Acock and Pachepsky (2000), which

enables the temporal completion of observed data

sets. To expand the range of weather variables within

a data set, observed and estimated data can be

combined. Methods exist to estimate solar radiation

(i.e. Bristow and Campbell, 1984; Muneer et al., 1996;
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Hansen, 1999), reference evapotranspiration (i.e.

Donatelli et al., 2003), relative humidity etc., that

utilise observed variables.

Estimates made by simulation models, particularly

in site-specific studies when using weather data as input,

are determined by the inter-relationships between the

weather variables. Weather variables as inputs can have

significant impacts on simulation model estimates (i.e.

Aggarwal, 1995), particularly when due to introduced

errors arising from supplementary estimated data

(Rivington et al., 2003). Introduced errors in input

data can manifest themselves in terms of a model’s

incorrect estimations of quantities, rates, patterns,

timing and synchronisation of events. Models that

represent multiple entities with complex biophysical

interactions between them therefore require meteor-

ological data that maintains the true behaviour of the

interactions. Appropriate location-specific data are also

essential for model calibration. Calibration using non-

representative meteorological data will result in

unsuitable parameters for the place of model applica-

tion. Similarly, the analysis of observed data from

experimental studies (i.e. plant growth in outdoor

conditions), where it may be desirable to investigate the

response (or relationships) of a biological or physical

entity to the weather, becomes severely restricted when

appropriate meteorological data are not available.

In order to create complete weather data sets with the

required data types, it is therefore necessary to use

appropriate, reliable data estimationmethods and havean

understanding of their performance and behaviour. The

method employed may partly be determined by the

resources available (amount andquality of observed data,

computing, time and expertise), and level of precision

and accuracy required. Precipitation and air temperature

are commonly recorded, but their spatial variability and

the distribution of meteorological stations can still leave

significant gaps. Solar radiation is rarely observed,

with records typically covering short time periods

(Thornton and Running, 1999; Bechini et al., 2000;

Rivington et al., 2002) and absent for a particular place of

interest (i.e. Grant et al., 2004). Very few stations in

Britain observe daily precipitation, air temperature and

solar radiation together. Those that do often have records

covering only 1–5 years. More stations have records

of sunshine duration (hours) covering longer periods.

The ratio between meteorological stations recording

solar radiation and those recording temperature could

be as low as 1:500 on a global scale (Thornton and

Running, 1999). Hence there is great potential for the

enhancement of observed data sets to include estimated

solar radiation.
This paper investigates the quality of three methods

to estimate daily global solar radiation (the total

amount of direct beam and diffuse solar radiation

received by a flat surface at ground level

(MJ m�2 day�1)), in Britain based on observed vari-

ables. These models were chosen as they utilise

commonly available data and are representative of

the best state of such model development (further

details are given in Section 3.2). The aim was to

determine the performance of eachmethod and identify

patterns of characteristic behaviour of estimates. Such

information was considered as important when decid-

ing which method to use to provide supplementary data

in observed data sets.

2. Related research

2.1. Sunshine duration conversion

A range of methods are available for conversion of

sunshine duration to daily global solar radiation values

(i.e. Ångström, 1924; Revfeim, 1997). The Ångström

method requires the estimation of site-dependent

parameters, normally using a regression technique

based on the least squares method (Sen, 2001). Hybrid

models based on the Ångström method (i.e. Bahel et al.,

1987; Yang et al., 2000a) require detailed parameter-

isation. Johnson et al. (1995) developed a method for

use in tropical rainforest canopies, which was later

applied by Woodward et al. (2001) to pastures in New

Zealand. This model (JW, Appendix A) has only daily

sunshine duration (hours) and latitude as input and

contains a single empirical parameter (F, see Eq. (13)),

representing the relative intensity of diffuse solar

radiation from cloudy skies. The parameter F shows

limited variability with geographical location, indicat-

ing the potential for meaningful spatial interpolation (in

preparation). The JW model was refined and tested by

Rivington et al. (2002) and found to produce good

results for the regression coefficient of determination

(R2) at three sites (min, mean and max R2 = 87.0, 91.5

and 94.4, respectively, with n = 70 years). However, the

physical mechanism used in observation of sunshine

hours can result in large measurement errors, in the

range of �20% (BADC, 2004).

2.2. Air temperature based

Air temperature-based estimation models use max-

imum and minimum air temperature to estimate

atmospheric transmissivity (e.g. Bristow and Campbell,

1984; Richardson andWright, 1984). The Donatelli and
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Campbell (1998) (CD) and Donatelli and Bellocchi

(2001) (DB) models, as used in this paper, are detailed

in Appendix A. These models assume that daily

maximum air temperature will decrease with reduced

transmissivity (increased cloud cover), whilst minimum

air temperature will increase due to the cloud emissivity.

Conversely, clear skies will increase maximum air

temperature due to higher short wave radiation input, and

minimum air temperature will decrease due to higher

transmissivity. These models have substantial potential

for application due to the greater availability of air

temperature data, but do require some observed solar

radiation data for parameter optimisation. Therefore, an

important restriction is the ability to interpolate para-

meter values to locations without solar radiation data.

2.3. Model assessment

Many assessments made of model performance use

statistical measures, most commonly squared correla-

tion coefficients (R2) of the line estimates versus

measurements, Root Mean Square Error (RMSE) and

mean bias error (MBE), either singularly (i.e. Weiss and

Hays, 2004) or together (i.e. Muneer et al., 1996; Hunt

et al., 1998; Iziomon and Mayer, 2001). Podestá et al.

(2004) compared solar radiation estimated from

sunshine duration with that estimated from temperature

based models, finding that the former produced lower

RMSE (1.5 MJ m�2 day�1 versus 3.2 MJ m�2 day�1).

Similarly, Chen et al. (2004) compared sunshine

duration and temperature based methods at 48 locations

in China, using the Nash-Sutcliffe (Nash and Sutcliffe,

1970) coefficient of model efficiency assessment. Based

on this single index, these authors concluded that the

temperature based models tested where unsuitable for

solar radiation estimation in China. Ball et al. (2004)

tested a range of methods at thirteen sites in North

America, using RMSE and R2. The best performing

model (the Hargreaves-Samani model with site-specific

parameters) gave RMSE values of 3.50 MJ m�2 day�1

and R2 of >0.87. Based on these results these authors

concluded that the models tested provide precise and

accurate results and that the models did not require

further modification.

However, there are limitations in evaluating models

when using only a single test statistic, or separate

multiple statistics (e.g. Yang et al., 2000b). Bellocchi

et al. (2002) present the case that model evaluations are

difficult using such statistics, and interpretation of

which becomes descriptive rather than based on

statistical significance (Willmott, 1982). Each statistic

will assess a single component of model behaviour. It is
possible that a model can be deemed unsuitable and

rejected based on an assessment by one statistic

assessing one form of model performance, whilst other

attributes of the model may be desirable. Similarly a

model’s performance may be seen as acceptable based

on one statistic, but still contain poor qualities not

assessed by appropriate tests.

One approach to overcome this problem is to use a

fuzzy logic based multiple-indices assessment system

(Bellocchi et al., 2002). This enables the calculation of a

single indicator made up from a number of individual

indices representing different statistical tests for model

behaviour. Such an approach provides a more compre-

hensive assessment and makes it easier to identify best

performing models.

3. Materials and methods

3.1. Database and data source

The UK Meteorological Office supplied meteorolo-

gical data via the British Atmospheric Data Centre

(BADC) website (http://badc.nerc.ac.uk/home/index

.html). Data were compiled within an Oracle database

for 24 locations in the UK (Fig. 1). Errors, duplicates

and anomalies in the original data were identified during

the database loading process. Missing values were filled

using a search and optimisation method (LADSS,

2004). Sites were only included if they had daily

observed maximum and minimum air temperature (8C),
global solar radiation (MJ m�2 day�1) and sunshine

duration (hours) data for a minimum of 5 years. Years

where >31 consecutive days of data were missing were

excluded, as were years where there were >50 missing

days in total.

3.2. Solar radiation estimation

For each site and year of available data, daily solar

radiation (MJ m�2 day�1) values were estimated using

the following models (Appendix A) and written to the

database:
� S
unshine duration conversion model (JW), based on

Johnson et al. (1995) and Woodward et al. (2001).
� C
ampbell-Donatelli (CD) air temperature model

(Donatelli and Campbell, 1998).
� D
onatelli-Bellocchi (DB) air temperature model

(Donatelli and Bellocchi, 2001).

These models were chosen as they utilise readily

available weather data inputs and are representative of

http://badc.nerc.ac.uk/home/index.html
http://badc.nerc.ac.uk/home/index.html
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Fig. 1. Sites of observed meteorological data (number of years of data) and elevation (m a.s.l.).
the current best state of development of such models.

The authors are unaware of the JW model being used

elsewhere, other than the studies by the original

developers of Johnson et al. (1995) and subsequently

by Woodward et al. (2001), despite its promising

potential (Rivington et al., 2002). It has only one

empirical parameter (F), compared to multiple para-

meters of others, for example the Ångström model.

Models based on air temperature have a strong physical

basis (Bellocchi et al., 2002, 2003), and utilise readily

available input data. Further to this, the CD and DB

models exist within the freely available PC implemen-

ted software tool RadEst (SIPEAA, 2004) and have

been applied in specific studies, i.e. Mavromatis et al.

(2002). The CD model has also been implemented

within a number of crop models and weather data

generating tools, i.e. CropSyst/ClimGen (Stöckle et al.,

2003), Marksim (Jones and Thornton, 2000) and

CRITERIA (Marletto et al., 2001). The CD and DB

models have been tested in a wide range of locations

worldwide, i.e. 20 by Bellocchi et al. (2003) and approx.

200 (unpublished, for parameter dataset see SIPEAA,

2004), but have not been applied to a large number of

sites in a single country, such as Britain, with a maritime

climate.

The CD and DB models required the calculation of

extra-terrestrial solar radiation (Ra) and atmospheric

transmissivity (ti) and clear sky transmissivity (t).

These values were calculated according to the methods

described in the RadEst documentation (SIPEAA,
2004). Parameters for the three models were optimised

using observed solar radiation data for each site. The

optimisation method for the JW model empirical

parameter (F—see Eq. (13), Appendix A) is detailed

in LADSS (2005). The RadEst tool (SIPEAA, 2004)

was used to produce site representative parameters for

the CD and DB models. These optimised parameters

help ensure both a site-specific and generic temporal

representation, i.e. a single parameter value was used

for one site for all years.

3.3. Model testing

The performance of the JW, CD and DB models

were initially tested using single statistical indices:

Root Mean Square Error (RMSE) and standard

deviation. The models were then tested using the

fuzzy-logic based multiple-indices assessment system

of Bellocchi et al. (2002). This method permits a

flexible structure in which a range of indices and test

statistics can be aggregated into a single modular

indicator (Irad), based on an expert weighting expres-

sion of the balance of importance of the individual

indices and their aggregation into modules. The indices

used were (Table 1): Relative Root Mean Square Error

(RRMSE), modelling efficiency (EF), the probability

of equal means by the paired Student t-test (P(t)), the

correlation coefficient of the estimates versus mea-

surements (R) and two Pattern Indices, one computed

versus day of year (PIdoy), and the other versus
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Table 1

Multiple-indices assessment method (Irad) modules and statistical index content

Module Index Abbreviation Value range and purpose

Accuracy (magnitude

of residuals)

Relative Root Mean Square Error RRMSE 0 to infinity. The smaller RRMSE, the better the

model performance. A dimensionless index

allowing comparisons among a range of different

model responses regardless of units

Modelling Efficiency EF 1 to negative infinity. Best performance given when

EF = 1 Negative values of EF indicate that the

average values of all measured values is a better

predictor than the model

Paired Student t-test of probability

means being equal

P(t) 0 to 1. Best value is P(t) = 1 and the worst is 0

Correlation (between estimates

and measurements)

Correlation coefficient of the

estimates versus measurements

R �1 (full negative correlation) to 1 (full positive

correlation). The closer values are to 1,

the better the model

Pattern (presence or absence

of patterns in residuals)

Pattern Index by day of year PIdoy 0 to infinity. The closer values are to 0 the better

the model. Units are MJ m�2 day�1. Day of year

is an independent variable

Pattern Index by minimum

air temperature

PITmin
0 to infinity. The closer values are to

0 the better the model. Units are MJ m�2 day�1.

Daily minimum air temperature is an

independent variable
minimum temperature (PITmin
). Further details on the

Pattern Indices are given in Donatelli et al. (2004).

These were calculated between the daily observed and

estimated solar radiation for each year and site.

Yearly values of each index were then aggregated into

modules (Fig. 2). A module is an evaluation index

calculated via a fuzzy-based procedure from one or more

basic statistics. For each module, a dimensionless value

between 0 (best model response) and 1 (worst model

response) is calculated. The Sugeno method of fuzzy

inference was adopted (Sugeno, 1985). Three member-

ship classes are defined for all indices, according to an

expert judgment, namely favourable (F), unfavourable

(U) and partial (or fuzzy) membership, using S-shaped

curves as transition probabilities in the range F to U:

Sðx; a; bÞ ¼

0 x � a

2
x� a

b� a

� �2

a � x � c

1� 2
x� b

b� a

� �2

c � x � b

1 x� b

8>>>>><
>>>>>:

(1)

where x is the value of the index, a is the lower bound of

the interval [min(F, U)], b is the upper bound of the

interval [max(F, U)], c = (a + b)/2.

According to (1), if a = F, then x � a means x = F,

and S(x;a;b) gives the degree of membership of the

index value x to the setU. Its complement, 1 � S(x;a;b),

gives the degree of membership of the index value x to
the set F. A two-stage design of a fuzzy-based rules

inferring system is applied (Table 1): first, several

indices are aggregated into modules and then, using the

same procedure, the modules are aggregated in a second

level integrated index (again, ranging from 0 to 1),

called indicator (Irad). The Modules represent the

criteria that the performance assessment should con-

sider: (i) the ability of the model to produce small

residuals; (ii) the extent to which estimates are

correlated with measurements and (iii) how residuals

are uniformly distributed over the range of two

independent variables (e.g. where day of year is used

as one of the independent variables it is possible to

assess how well the model represents the temporal

pattern of solar radiation distribution over a single year).

The control rules for estimating module values were

based on logic relationships between inputs and outputs,

expressed in linguistic terms by if-then statements. For

example, when two input variables are aggregated, four

rules are formalized as follows:
Premise
 Conclusion
if x1 is F and x2 is F
 then y1 is B1
if x1 is F and x2 is U
 then y2 is B2
if x1 is U and x2 is F
 then y3 is B3
if x1 is U and x2 is U
 then y4 is B4
where xi is an input variable, yi is an output variable and

Bi is a decision rule (or expert weight). The value of

each conjunction (. . . and . . .) is the minimum of the
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Fig. 2. Structure of the Irad model assessment method, where: RRMSE, Relative Root Mean Square Error; EF, modelling efficiency; P(t), Student t-

test probability of equal means; correlation R, correlation coefficient of the estimates vs. measurements; PIdoy, Pattern Index by day of year; PITmin
,

Pattern Index by minimum temperature (see also Table 1); F, favourable; U, Unfavourable; S, membership function; x, value of index a, Minimum

value of F; b, maximum value of U; Irad, single modular indicator.
quantified fuzzy sets, as obtained from complementary

S-shaped distribution curves. The output fuzzy sets for

all the rules are then aggregated into a single fuzzy set.

This set encompasses a range of output values, and is

de-fuzzified in order to resolve a single crisp output

value from the set. The centroid method was selected to

obtain the representative non-fuzzy value for the output,

as commonly adopted in the Sugeno-type systems. The

expert reasoning runs as follows: if all input variables

are F, the value of the module is 0 (good agreement

between estimates and measurements); if all indices are

U, the value of the module is 1 (bad agreement), while

all the other combinations assume intermediate values.

The weights were chosen on the basis of the authors’

own experience in handling each statistic. Based on the

authors’ judgment, a decreasing importance was

assigned to the modules: Accuracy, Pattern and Corre-

lation.

The mean Irad values per site were calculated and

ranked in increasing size per location for each model

(Table 3). The Irad method was implemented within the

database containing the weather data. Tests were

performed to ensure that the results gained from the

database were identical to those gained from the
original implementation of Irad in the IRENE_DLL

system for model evaluation (Fila et al., 2003).

3.4. Observed versus estimated daily mean

difference

For a selected number of locations (including the

sites with the lowest mean Irad values per model), the

difference between mean daily observed versus

estimated solar radiation D was calculated from all

available years at the site:

D has elements di ¼ ēi � ōi (2)

where ēi is the mean estimated solar radiation for day i

over n years, and ōi is the mean observed solar radiation

for day i over n years with

ēi ¼
1

n

X
j¼1;n

e ji (3)

and

ōi ¼
1

n

X
j¼1;n

o ji (4)
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Fig. 3. Difference in mean estimated versus observed daily solar radiation for Johnson-Woodward (JW), Campbell-Donatelli (CD) and Donatelli-

Bellocchi (DB) models at selected sites (grey shaded graphs are locations with the lowest Irad values per model).
where eji is the estimated solar radiation on day i of year

j, and oji is the observed solar radiation on day i of year j.

This difference in daily means (Fig. 3) helps to illustrate

the temporal distribution of mean daily errors over the

period of a year, indicating systematic model behaviour.

4. Results

For several sites individual years of data had to be

rejected as it was considered that an excessive number

of daily observations were missing in the original data.

Noticeably these sites tended to be in remote locations

with semi-automatic weather stations, where sensory

equipment failure may go undetected for long periods of

time. This serves as an illustration of the difficulties in

compiling a complete daily data set, even for sites
where observations are made. At four sites (Altnaharra,

Inverbervie, Loch Glascarnoch and Tulloch Bridge) it

was not possible to test the JWmodel due to the absence

of sunshine duration data. Several sites (Aberdeen,

Aberporth, Dunstaffnage and Hazelrigg) had fewer

years when sunshine duration data were available than

temperature data. Results for the basic level statistics of

RMSE and standard deviation are given in Table 2. The

ranked mean values per location and model for Irad are

given in Table 3, whilst the individual Irad indices

results are detailed in Table 4.

4.1. Overall model performance

The JW model gave the best results for all locations,

with a mean Irad of 0.146 compared with 0.525 and
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Table 2

Mean values for Root Mean Square Error (RMSE) and standard deviation for Johnson-Woodward (JW), Campbell-Donatelli (CD) and Donatelli-

Bellocchi (DB) models at each site

Location RMSE Standard deviation

(MJ m�2 day�1) (MJ m�2 day�1)

n JW CD DB JW CD DB

Aberdeen 29 (9) 2.229 4.874 4.962 7.466 6.855 6.530

Aberporth 40 (36) 2.803 4.897 4.869 8.046 7.201 7.012

Aldergrove 25 2.356 3.135 3.276 7.327 6.643 6.126

Altnaharra 7 (0) 3.901 4.545 6.615 6.117

Auchincruive 19 2.570 4.398 4.473 7.408 7.253 6.731

Aviemore 8 2.761 3.959 4.001 6.840 6.445 5.868

Bracknell 28 2.324 3.719 3.730 8.160 7.320 6.629

Brooms Barn 16 2.372 4.446 4.624 8.007 7.201 6.794

Cawood 29 2.382 4.277 4.390 7.346 7.072 6.621

Denver 18 2.285 4.329 4.491 7.720 7.118 6.682

Dunstaffnage 25 (13) 2.392 4.741 4.874 7.526 7.218 6.726

East Malling 34 2.426 4.570 4.693 8.280 7.181 6.519

Eskdalemuir 25 2.156 3.212 3.203 7.132 7.016 6.654

Everton 29 2.872 4.980 4.947 8.734 7.818 7.129

Hazelrigg 17 (6) 2.356 5.048 5.110 7.921 7.076 6.784

Inverbervie 7 (0) 4.610 4.504 7.505 7.162

Lerwick 41 2.149 3.329 3.449 6.690 6.659 6.421

Loch Glascarnoch 7 (0) 3.865 3.820 6.387 6.032

Mylnefield 23 2.586 4.715 4.860 7.420 6.857 6.496

Rothamstead 30 2.515 4.309 4.475 8.075 6.959 6.544

Stornoway 15 2.421 4.270 4.236 7.075 6.414 6.085

Sutton Bonington 26 3.129 4.435 4.455 7.426 6.821 6.263

Tulloch Bridge 6 (0) 4.751 4.533 7.802 7.245

Wallingford 26 2.314 4.172 4.243 7.483 6.959 6.523

Mean 2.470 4.289 4.365 7.604 7.017 6.570

n Values in parenthesis refer to years of available sunshine duration data.
0.522 for the CD and DB models, respectively.

However, each model showed abilities to provide the

best estimates for different individual indices whilst

also providing the worst for others, i.e. the DB model

had the best results for the paired t-test, P(t) at all but

nine sites, but had the poorest performance when

assessed by the Relative Root Mean Square Error

(RRMSE). The case was the opposite for the JWmodel,

with good RRMSE but poor results for the paired t-test,

P(t).

4.2. Sunshine duration model (JW)

The JW had consistently the lowest RMSE values

between all the models for all sites, with a mean of

2.470 (MJ m�2 day�1), but had the highest standard

deviation of 7.604 (MJ m�2 day�1). The JW model

showed consistently low mean Irad values at all sites.

The lowest and highest means were 0.034 (Denver) and

0.254 (Auchencruive), respectively. At all but two sites

(Aviemore and Dunstaffnage) the JW model gave Irad
values of 0.000 at least once. The largest single year’s

value of Irad (0.870) was found at Sutton Bonnington.

In a spatial context, lower values of Irad tended to be

found at sites in lowland eastern parts of Britain.

Exceptions were Eskdalemuir (242 m a.s.l.), with a

mean Irad of 0.086, and conversely, Sutton Bonnington

(48 m a.s.l.) with a mean Irad of 0.242. Higher values of

Irad where found at west coast sites, such as

Dunstaffnage (0.202), Lerwick (0.240), Aberporth

(0.246) and Auchencruive (0.254). However, the

highest mean Irad value for the JW model (0.254)

was still lower than the smallest means for the CD and

DB models (0.301 and 0.322, respectively).

For individual Irad indices, JW gave the best results

for RRMSE, modelling efficiency (EF) and correlation

coefficient (R) at all sites where sunshine duration data

were available. JWalso gave the best results for the day

of year Pattern Index (PIdoy) at 12 sites and minimum

temperature Pattern Index (PITmin
) at 15 sites. However,

the JW model performed relatively poorly compared

with the DB, and to a lesser extent CD, using the paired
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Table 3

Ranked mean Irad values for Johnson-Woodward (JW), Campbell-Donatelli (CD) and Donatelli-Bellocchi (DB) models at each site

Ranked mean Irad values

Site JW Site CD Site DB

Denver 0.034 Lerwick 0.301 Eskdalemuir 0.322

Bracknell 0.044 Aldergrove 0.330 Lerwick 0.352

East Malling 0.086 Eskdalemuir 0.377 Bracknell 0.374

Eskdalemuir 0.086 Bracknell 0.392 Aldergrove 0.410

Aberdeen 0.089 Auchincruive 0.456 Wallingford 0.450

Hazelrigg 0.104 Inverbervie 0.462 Auchincruive 0.456

Brooms Barn 0.109 Aviemore 0.474 Inverbervie 0.472

Cawood 0.113 Stornoway 0.477 Brooms Barn 0.511

Wallingford 0.126 Rothamstead 0.536 Aviemore 0.511

Aldergrove 0.137 Wallingford 0.538 Denver 0.513

Rothamstead 0.139 Dunstaffnage 0.543 Cawood 0.524

Everton 0.150 Denver 0.548 Altnaharra 0.528

Mylnefield 0.162 Brooms Barn 0.560 Stornoway 0.535

Stornoway 0.167 Altnaharra 0.575 Tulloch Bridge 0.556

Aviemore 0.196 Cawood 0.580 Rothamstead 0.557

Dunstaffnage 0.202 Mylnefield 0.584 Sutton Bonington 0.565

Lerwick 0.240 Loch Glascarnoch 0.585 East Malling 0.580

Sutton Bonington 0.242 East Malling 0.590 Dunstaffnage 0.592

Aberporth 0.246 Sutton Bonington 0.592 Loch Glascarnoch 0.595

Auchincruive 0.254 Tulloch Bridge 0.596 Aberporth 0.604

Everton 0.604 Hazelrigg 0.606

Hazelrigg 0.608 Mylnefield 0.607

Aberdeen 0.642 Everton 0.643

Aberporth 0.642 Aberdeen 0.663

Mean 0.146 0.525 0.522
t-test, P(t). The model achieved good values for both the

PIdoy and PITmin
, with means of 1.28 and 1.08

(MJ m�2 day�1), respectively.

4.3. Campbell-Donatelli model (CD)

The CD model gave a mean RMSE for all sites of

4.289 (MJ m�2 day�1), which was slightly better than

the DB model. For standard deviation the CD gave the

second best overall result of 7.017 (MJ m�2 day�1). The

CD model produced Irad indices values that were very

similar to those of the DB model. In comparison

between all three models, the CD performed marginally

worse than the DB model, with a mean Irad value of

0.525 across all sites. The best mean Irad result was at

Lerwick (0.301), and the highest mean Irad at

Aberporth (0.642). There was a less well defined

pattern in the spatial distribution of sites with low and

high values of Irad, compared with the JW model. The

CD model was able to produce solar radiation data that

resulted in comparatively low Irad values at a diverse

range of sites, i.e. Lerwick in the Shetland Islands

(0.301), Aldergrove in Northern Ireland (0.330) and

Bracknell, lowland south-east England (0.392). There
was no clear relationship with distance between sites:

Rothamstead (0.536) and Wallingford (0.538) are

56 km apart, whereas Aberdeen (0.642) and Inverbervie

(0.462) are only 32 km apart. Similarly the model was

able to produce similar Irad values at different

elevations, i.e. Aldergrove, 68 m a.s.l. (0.330) and

Eskdalemuir, 242 m a.s.l. (0.377).

For individual indices, the CD was slightly better

than the DB for RRMSE, though the size of differences

was very small. The CD model gave the best results for

the paired t-test, P(t) at only six sites, but all values were

similar to the best performing model, DB. For R the

model had near identical values as to those of the DB,

and only very slightly smaller than those of the JW. For

the Pattern Indices, the CD gave the best results for PIdoy
at six sites, and at seven for PITmin

, the remaining values

being similar to the other models, but with the overall

highest means of 1.55 (MJ m�2 day�1) for PIdoy and

1.38 (MJ m�2 day�1) for the PITmin
.

4.4. Donatelli-Bellocchi model (DB)

The DB model produced the highest mean RMSE

values between the three models, of 4.365
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Table 4

Index values used within multiple-indices assessment method, for Johnson-Woodward (JW), Campbell-Donatelli (CD) and Donatelli-Bellocchi (DB) models for all sites

Location Mean Index Values

n (years) RRMSE t-test EF Correlation PIdoy PITmin

JW CD DB JW CD DB JW CD DB JW CD DB JW CD DB JW CD DB

Aberdeen 29 (9) 26.84 57.80 58.86 0.21 0.38 0.48 0.90 0.53 0.51 0.96 0.76 0.74 0.89 1.62 1.44 0.72 1.22 1.42

Aberporth 40 (36) 27.86 48.47 48.17 0.27 0.23 0.24 0.87 0.62 0.62 0.94 0.80 0.80 1.80 2.01 1.90 1.49 1.90 1.56

Aldergrove 25 26.67 35.46 37.01 0.23 0.06 0.04 0.75 0.68 0.68 0.90 0.86 0.85 2.05 1.77 2.22 1.52 1.36 1.37

Altnaharra 7 (0) 53.91 56.12 0.22 0.12 0.63 0.60 0.83 0.83 1.65 1.44 1.57 1.72

Auchincruive 19 28.73 49.04 49.90 0.14 0.51 0.48 0.88 0.64 0.63 0.94 0.82 0.80 1.67 1.26 1.43 1.52 1.01 1.04

Aviemore 8 26.54 42.88 43.78 0.02 0.00 0.00 0.90 0.74 0.73 0.95 0.88 0.88 1.61 1.84 2.46 0.75 1.06 1.12

Bracknell 28 23.89 38.29 38.39 0.22 0.25 0.22 0.90 0.73 0.73 0.96 0.87 0.86 0.80 1.43 1.09 1.10 1.25 1.07

Brooms Barn 16 24.47 45.96 47.81 0.19 0.26 0.54 0.89 0.62 0.59 0.96 0.81 0.78 1.15 1.27 0.77 1.05 1.80 1.47

Cawood 29 26.92 48.06 49.36 0.16 0.22 0.35 0.88 0.62 0.60 0.95 0.82 0.79 1.14 1.67 1.08 1.01 1.40 1.22

Denver 18 23.42 44.47 46.13 0.34 0.35 0.44 0.90 0.64 0.61 0.96 0.82 0.79 0.96 1.45 0.97 0.70 1.46 1.33

Dunstaffnage 25 (13) 28.06 55.35 56.95 0.12 0.31 0.35 0.90 0.60 0.58 0.95 0.80 0.77 1.57 1.06 1.54 1.10 1.16 1.15

East Malling 34 25.02 47.25 48.51 0.19 0.32 0.40 0.89 0.61 0.59 0.96 0.80 0.78 0.91 1.74 1.37 0.99 1.50 1.12

Eskdalemuir 25 27.02 40.17 40.06 0.23 0.20 0.25 0.90 0.78 0.78 0.95 0.90 0.89 1.08 1.37 0.98 0.98 1.30 1.35

Everton 29 26.73 46.44 46.11 0.17 0.32 0.38 0.86 0.58 0.59 0.95 0.80 0.78 1.15 1.74 1.70 1.18 1.63 1.94

Hazelrigg 17 (6) 25.34 54.99 55.64 0.24 0.41 0.52 0.90 0.55 0.54 0.96 0.76 0.75 0.99 1.44 1.18 1.23 1.38 1.14

Inverbervie 7 (0) 51.39 50.15 0.55 0.56 0.63 0.65 0.82 0.82 1.26 1.34 1.34 1.34

Lerwick 41 28.04 43.28 44.35 0.13 0.35 0.35 0.91 0.78 0.77 0.96 0.89 0.88 1.76 1.09 1.37 1.14 1.05 1.17

Loch Glascarnoch 7 (0) 56.21 55.16 0.37 0.32 0.61 0.63 0.81 0.80 1.88 2.04 1.90 1.72

Mylnefield 23 28.33 53.73 55.46 0.19 0.27 0.34 0.89 0.59 0.57 0.95 0.79 0.76 1.33 1.49 1.58 0.92 1.20 1.25

Rothamstead 30 26.96 46.08 47.85 0.15 0.18 0.27 0.87 0.64 0.61 0.95 0.82 0.79 0.89 1.16 0.97 1.10 1.47 1.25

Stornoway 15 25.29 49.69 49.60 0.07 0.22 0.34 0.92 0.68 0.68 0.96 0.83 0.83 1.54 1.96 2.24 1.04 1.43 1.59

Sutton Bonington 26 35.27 49.63 49.89 0.39 0.21 0.23 0.77 0.59 0.59 0.89 0.80 0.78 1.13 1.50 1.34 1.15 1.37 1.16

Tulloch Bridge 6 (0) 56.61 54.61 0.33 0.08 0.56 0.59 0.81 0.81 1.87 1.08 1.04 1.36

Wallingford 26 24.87 44.97 45.76 0.12 0.20 0.34 0.89 0.65 0.63 0.95 0.82 0.81 1.12 1.57 1.05 0.89 1.41 0.96

Mean 26.81 48.34 48.98 0.19 0.28 0.32 0.88 0.64 0.63 0.95 0.82 0.81 1.28 1.55 1.44 1.08 1.38 1.33

Greyed areas show the best result per index (n values in parenthesis are the sample sizes for years of available sunshine duration data).
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(MJ m�2 day�1). However, it gave the lowest overall

standard deviation of 6.570 (MJ m�2 day�1). The DB

model had similar Irad values to the CD, with a slightly

lower mean of 0.522. The lowest Irad was at

Eskdalemuir (0.322) and the highest at Aberdeen

(0.663). As with the CD model, DB produced solar

radiation data that gave low Irad values at a diverse

range of sites. The highest Irad ranges were found at

similar sites to the CDmodel, notably Aberdeen (0.663)

and Everton (0.643). The model was able to produce

solar radiation estimates that gave low Irad values at

sites as diverse as Lerwick (0.352) and Bracknell

(0.374).

For individual Irad indices, the DB model was the

best when assessed by the paired t-test, P(t) at 15 sites.

Mean values for EF and R where similar to the CD

model, being generally good, with values approaching

+1. For the Pattern Indices, DB gave the lowest values at

six locations for PIdoy, and three for PITmin
, whilst giving

lower mean values than the CD model (1.44 and 1.33

MJ m�2 day�1, respectively).

4.5. Observed versus mean daily difference

Fig. 3 illustrates the temporal distribution character-

istics, for each model, of daily mean errors and the

observed daily mean solar radiation for selected sites.

The JW consistently over-estimates solar radiation

values in the winter, early spring and late autumn period

(approximately January to end of March and mid

October to end of December). There is a tendency to

under-estimate values in the late spring, summer and

early autumn (start of April to mid October), best

illustrated by the Lerwick results. The lowest Irad value

for JW was at Denver (0.034), where the temporal

distribution of daily mean errors fluctuates around the

observed mean values throughout the summer period.

The JW model has a built-in function of estimating a

base level of diffuse solar radiation under cloudy

conditions for each day of the year, determined by day

length (see Eq. (5), Appendix A), so that days with 0 h

of sunshine still result in approximations of solar

radiation values. The results suggest that the model

requires further refinement to reduce the over-estima-

tion caused by the daily base level diffuse radiation

component estimation (J0,d), and an increase in the

estimates resulting from the direct beam radiation

estimation (J0,s) in the summer period.

The CD model’s temporal distribution of errors

shows that it tends towards under-estimation in the

winter and early spring period, i.e. Wallingford and

Eskdalemuir. The CD has an overall tendency for the
errors to fluctuate about those of the observed data, i.e.

very short time periods between switching from under-

to over-estimation. The site with the lowest Irad value

for CD, Lerwick (0.301) also had very good patterns of

error distribution, with limited over-estimation in the

winter, spring and early autumn period, and fluctuations

about the observed daily mean in the summer.

Conversely, Eskdalemuir had the CD’s third best Irad

value, but there is a constant under-estimate in the

winter and large summer-time fluctuation about the

observed mean.

The DBmodel showed similar patterns of daily mean

error as the CD. The model has a tendency towards

over-estimation in the winter, early spring and autumn

periods, and though there is fluctuation in daily mean

errors about the observed mean, there is a greater level

of under- than over-estimation. The lowest Irad value

for DB was at Eskdalemuir, where Fig. 3 shows there

was an even balance in the fluctuation of the mean daily

errors about the observed daily mean.

5. Discussion

5.1. Model performance

The three models tested were able to produce solar

radiation data that in general represented both the

quantities and patterns of observed data. The JW model

gave the best overall results in terms of individual

indices and Irad. The two air temperature based models

produced higher Irad values than the JW model, but

when examining the individual indices, i.e. the paired t-

test, P(t) indicated that the DB model gave the better

performance for that particular form of estimate

behaviour. The JW model was clearly the best in

respect of Root Mean Square Error (RMSE), Relative

Root Mean Square Error (RRMSE), modelling effi-

ciency (EF), correlation coefficient (R) and minimum

temperature Pattern Index (PITmin
), but there was a more

even spread considering the mean response across all

locations for day of year Pattern Index (PIdoy).

Localised climates could be attributed to some

results for each model. The air temperature based

model’s behaviour may be influenced by site-specific

characteristics. Aberdeen has an occasional summer sea

fog that affects air temperatures, potentially distorting

the basis of the CD and DBmodel interpolation method,

reflected in the higher Irad values (0.642 and 0.663,

respectively). Similarly, Everton is a coastal site, which

often experiences strong localised sea-breeze (advec-

tion) effects on clear sky days. Such events will alter the

temperature measurements and distort the relationship
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with solar radiation, even though the DBmodel contains

a component (weighing DTwith the mobile weekly DT,

Eq. (15)) to dilute advection effects.

The results indicate variability in the spatial

capability of each model, given the differences in

results between locations. The JW model’s worst

performances were at the west coastal sites of

Aberporth (0.246) and Auchencruive (0.254), which

have a greater amount of cloud cover than east coast

sites, i.e. Aberdeen (0.089). Conversely, ranking of the

air temperature based models performance indicated

that they perform better in locations experiencing more

cloudy conditions than those with generally clearer

skies.

This investigation has used generic optimised

parameters, which over multiple years are crude

estimates, but do provide location defining values of

general use for any application in the same site. The JW

model appears less sensitive to variation in its single

empirical parameter (F) than the CD and DBmodels are

to their respective multiple parameters. The spatial

application of the models tested, and others, is limited

by the ability to provide appropriate site-representative

parameters that also capture the temporal variability.

Specific geographical locations will obviously have

particular characteristics which causes the parameters

to deviate from a general model, but a method of model

optimisation for each site has additional problems.

Restrictions in data availability, noise in available

datasets and the requirements of model parameter

optimisation place real limits on what can be

accomplished using the types of model discussed here.

The use of neural networks has potential, as an

alternative to the types of models tested here, for

generating parameter values in non-linear model

development where data is noisy or the relationships

between parameters is unclear (Moisen and Frescino,

2002; Aitkenhead et al., 2003; Laffan and Lees, 2004),

with the only requirement being that a dataset exists

from which the neural network can be trained. Neural

networks are not a perfect solution to the above

problem, however. The issue of spatial parameter

interpolation remains, although they can be used to

provide a degree of interpolation provided additional

information is available (e.g. Shen et al., 2004; Cornet

et al., 2004). For the current example of solar radiation

modelling, parameters such as elevation, spatial

location, and distance to coastline may provide this

type of information. Additionally, training a neural

network does require sufficient data points to explore a

sufficient proportion of parameter phase space, in terms

of data point density and likely range of parameters.
5.2. Assessment method

The Irad assessment method as applied here

demonstrates its ability to identify the quality of model

estimates and for use in between-model comparisons.

Conventional methods (RMSE, R2 etc.) for model

assessment have provided an indication of the

magnitude of differences between observed and

estimated values and their correlations, but this research

has demonstrated that a more detailed investigation

reveals valuable information about a model’s behaviour.

The combined approach of using a multiple-indices

assessment method such as Irad and graphical displays

of temporal patterns of difference in daily means gives a

comprehensive set of information on which to base

judgement as to which is the best model to use.

Although this method is reliable for model perfor-

mance testing, examples of exceptions exist, depending

on what form of model behaviour is being observed, i.e.

when comparing Denver (JW = 0.034) and Lerwick

(CD = 0.301), the CD at Lerwick has a better difference

in daily mean pattern. Similarly, the JW at Wallingford

had a larger Irad (0.126) than Denver (0.034), but better

temporal distribution pattern of errors (Fig. 3). These

exceptions and the results for indices values indicate

that an important consideration in choosing a model for

data estimation is how the estimates are used and what is

important. Using the JW model, with its tendency to

under-estimate solar radiation in the UK growing

season, when used in, for example, a crop model to

estimate mean yields, would lead to an under-estimation

of biomass accumulation. Conversely, crop model

estimates would be different using the CD or DB, with

their fluctuating values of solar radiation about the daily

mean, as over- and under estimates cancel each other

out (Rivington et al., in press). If the estimates are to be

used within experimental analysis, i.e. a biological

process influenced by the weather, then the precision

and accuracy of the daily estimates becomes more

important. In such cases the long-term mean response

becomes less relevant and individual indices such as

RRMSE, EF, correlation (R) and Pattern Indices

indicate the best model options.

The results gained call into question the ability of a

model’s performance to be assessed by single assess-

ment indices. Some authors, i.e. Ball et al. (2004) and

Chen et al. (2004), have reached conclusions about the

accuracy and precision, or unsuitability (respectively)

of model performance based on single indices. Our

research indicates that such conclusions should only be

reached following the application of a detailed multiple-

indices and graphical representation approach.
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The level of detail given here to model evaluation

becomes important were such methods are used for data

set enhancement, as the results provide valuable

information (a form of meta-data to accompany the

data set), on the degree of uncertainty that estimated

data may introduce. Errors in estimates will introduce

uncertainty (difference between observed and estimated

values) into data sets, which when used for modelling or

experimental analysis purposes, will be propagated

through to the final results. Knowledge of such

uncertainty (i.e. magnitude and patterns of errors) will

help when interpreting results from models and

experimental analysis.

6. Conclusions

Where sunshine duration data are available, it is

preferable to use the JW model to estimate solar

radiation, rather than the models based on air

temperature. However, given the greater availability

of temperature data, both spatially and temporally, the

two air temperature based methods tested here will

make reliable estimates to enable the creation of

complete data sets. The results have demonstrated that

each model is capable of making good estimates at

some locations and poorer ones at others. The JWmodel

has a systematic under-estimation error in the late

spring, summer and early autumn period. The CD

model tends to under-estimate values in the winter to

early spring period. The DB model tends to over-

estimate values in the winter to early spring period.

There is a need to consider how the estimates are to

be used when deciding which model to use, i.e. be aware

of when in the year each model makes under- and over-

estimates. Consideration should be given to the overall

model performance as illustrated by the Irad value and

the individual assessment indices, supported by some

form of graphical representation of the temporal pattern

of error distribution. Hence researchers and practi-

tioners wanting to create complete weather data sets, i.e.

observed precipitation and temperature supplemented

with modelled solar radiation, need to be aware of the

behaviour of the models and how introduced errors may

manifest themselves in the purposes to which the data

are put. Similar consideration needs to be given to

localised weather phenomena, with practitioners being

aware of how this may impact on model estimates.

The results gained have shown the value of using a

combination of assessment methods to provide a

comprehensive illustration of model performance and

behaviour. Such an approach is recommended in order

to provide valuable information on the magnitude and
pattern of errors that may occur when estimated data are

combined with observed data to create complete data

sets.
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Appendix A

A.1. Estimation of solar radiation from sunshine

duration—JW model

Johnson et al. (1995) and Woodward et al. (2001)

used sunshine duration to estimate solar radiation. The

model accounts for latitude, solar declination and

elevation, day length and atmospheric transmissivity on

a daily basis and has only daily sunshine duration

(hours) as input. Total daily irradiance (J0) is given by:

hJ0 ¼ SJ0;s þ hJ0;d (5)

where h is day length, S is the sunshine duration, J0,s is

the direct beam and J0,d the diffuse components. Day

length in hours is calculated by:

h ¼ 24

p
cos�1ð�tanltandÞ (6)

where l is the latitude and d is the solar declination in

radians. Pi (p) is 3.14159265. Solar declination for each

day of the year is given by:

d ¼ �0:4084cos

�
2p

d þ 10

365

�
(7)

where d is the Julian day of year.

Following Campbell (1977), the direct beam

component J0,s is given by:

J0;s ¼ 1367
2 p

p
sinfðt1=sinfÞ (8)

where p is the fraction of radiation in full spectrum

sunlight (here 1 is used) and 1367 is the solar constant

(J m�2 s�1). t is the atmospheric transmissivity (the
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method used to estimate transmissivity in the JWmodel

was the same as that of the CD and DB models). f is the

solar elevation at solar noon, in degrees from horizontal:

sinf ¼ sinlsindþ coslcosd (9)

The diffuse portion of total irradiance is represented

by J0,d (cloud conditions and from blue sky scattering

simultaneously), following List (1971), can be calcu-

lated by:

J0;d ¼ J0; pð fblueð1� cÞ þ fcloudcÞ (10)

where c is the mean daily fraction of cloud cover, where

invoking the Taylor Hypothesis (Stull, 1988) gives:

c = 1 � (S/h), being a dimensionless value between 0

(complete cloud cover) and 1 (no cloud cover).

J0,p is the potential total clear sky mean daily

irradiance:

J0; p ¼ 1367
p

p
sinfð1þ t1=sinfÞ (11)

The values of fblue and fcloud represent the relative

different radiation intensities under blue sky and cloud

conditions, respectively:

fblue ¼
1� t1sinf

1þ t1sinf
(12)

fcloud ¼ F fblue (13)

To determine the parameter F (Eq. (13)) for each

site, values were fitted for each day per year to give

daily optimised F values (LADSS, 2005). The mean

value per year was calculated, then the mean of these

values used to represent a particular site. Woodward

et al. (2001) determined an F of 1.11 for New Zealand.

For the UK there was a range in mean F between 0.69

and 0.87 (individual year and location range of 0.391–

1.047, overall mean of 0.688). The JWmodel imposes a

base-line amount of diffuse radiation, variable with h,

such that an input of 0 sunshine hours will still produce

a value of irradiance for a given day of year.

A.2. Estimation of solar radiation from air

temperature—DB and CD models

Daily values of solar radiation at ground level can be

estimated as the product of solar radiation outside the

Earth’s atmosphere times a coefficient of radiation

transmission through the atmosphere. General routines,

based purely on solar geometry, are available to

calculate extra-terrestrial solar radiation for a location

on any given day of the year (e.g. Stine and Harrigan,

1985; Spitters et al., 1986; Pickering et al., 1994). The
transmissivity coefficient (tti) is modelled daily from air

temperature (8C) according to alternative functions, two
of them used here:

Campbell-Donatelli (CD) model (Donatelli and

Campbell, 1998):

tti ¼ t½1� expð�b f ðTaÞDT2
i f ðTnÞÞ� (14)

Donatelli-Bellocchi (DB) model (Donatelli and

Bellocchi, 2001):

tti ¼ t

�
1þ f ðiÞ

��
1� exp

�
�bDT2

i

DTweek

��
(15)

where t is the clear sky transmissivity (reference value

equal to 0.75), b is the temperature range coefficient,

DTi is the daily air temperature range, equal to:

DTi ¼ Tx i � 0:5ðTn i þ Tn iþ1Þ (16)

where Txi is the daily maximum air temperature (8C)
and Tni is the daily minimum air temperature (8C).
DTweek is the mobile average daily temperature range

over 7 days around the current day. The function of

average air temperature, f ðT̄Þ is given by:

f ðT̄Þ ¼ 0:017expðexpð�0:053TaiÞÞ (17)

where Tai is the daily average air temperature, equal to

Tai ¼ 0:5ðTxi þ TniÞ (18)

The function of daily minimum air temperature,

f(Tn) is equal to:

f ðTnÞ ¼ exp

�
Tni
Tnc

�
(19)

where Tnc is the summer night air temperature factor

and f (i) is the seasonality function, equal to

f ðiÞ ¼ c1

�
sin

�
irc2

p

180

�
þ cos

�
ir f ðc2Þ

p

180

��

(20)

where c1 is the first seasonality factor, c2 is the second

seasonality factor (varying from 0 to 0.5 and from 1 to

1.5) and ir is a reverse option (ir = i for no reverse;

ir = 361 � i for reverse), with f(c2) being a function of

c2, equal to:

f ðc2Þ ¼ 1� 1:90ðc2 � ½c2�Þ þ 3:83ðc2 � ½c2�Þ2 (21)

where [c2] is the integer of c2.

Both models are based on the approach of Bristow

and Campbell (1984) and are part of a suite of models

contained within the RadEst global solar radiation

estimation tool (Donatelli et al., 2003), available

through the web site http://www.sipeaa.it/tools. The

http://www.sipeaa.it/tools
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data input requirements are daily values of maximum

and minimum air temperature, and location-specific

parameters (t, b, Tnc, c1, c2, ir). Model CD includes the

summer night air temperature factor originally devel-

oped by Donatelli and Marletto (1994) to adjust

underestimations at times observed with the approach

of Bristow and Campbell (1984) during either the

months July-August (Northern hemisphere) or January

to February (Southern hemisphere). A trigonometric

function was originally introduced by Donatelli and

Bellocchi (2000) as a seasonality function to prevent

estimates from showing systematic patterns at a large

range of latitudes (including tropical sites) and, with

further improvements, has become the seasonality

component of the model DB. Model parameters for a

sample of about 200 sites world-wide can be down-

loaded from the RadEst web page (RadEst, 2004), as

obtained via optimisation procedures over multiple year

radiation data-sets.
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