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/10 /Abstract

/11 /

/12 / Land managers are often confronted with management problems that could be addressed

/13 /using decision support or management information systems. The use of such tools, however,

/14 /depends on the availability of appropriately resolved spatial data. One source of such data is

/15 /multi-spectral remotely sensed imagery. The cost of such imagery, particularly where

/16 /environmental goals are most important, is often prohibitive. Even when the cost of such

/17 /imagery can be met, other factors, such as cloud cover for satellite-based systems or sensor

/18 /scheduling for sophisticated airborne systems, may mean that imagery is not available. This

/19 /paper investigates the utility of a system that combines near-infrared imagery from a video

/20 /camera with conventional medium-format aerial photography deployed in a light aircraft

/21 /platform. Previously, imagery obtained from video cameras has suffered from limited spectral

/22 /range and from significant image motion effects. These problems were eliminated by the use of

/23 /an electronic-shutter charge-coupled device video camera with a strong IR response. The

/24 /systems components and the approach to their operational deployment are described and the

/25 /options for transforming the raw imagery into survey coverage discussed. The image quality

/26 /and cost is presented for a site characterisation application where the aim is the generation of

/27 /normalised difference vegetation index values. It is concluded that the system has significant

/28 /potential utility for decision support and land-management applications.
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/31 /1. Introduction

/32 /1.1. Context

/33 / Developers of computer-based decision support and management information

/34 /systems have sought to assist land managers making a wide range of increasingly

/35 /complex decisions (Matthews et al., 1999). Management objectives include increas-

/36 /ing efficiency, minimising environmental impact or achieving an acceptable balance
/37 /between multiple objectives. Whatever the goal of such systems, their operational

/38 /success depends on the provision of appropriately resolved spatial data within

/39 /acceptable cost. Insufficiently resolved data produces unacceptable uncertainty in

/40 /prediction whilst excessive cost prohibits employing such data at all. This paper

/41 /presents an approach to reducing the cost of gathering high-resolution multi-spectral

/42 /spatial data, suitable for a wide range of land-management applications, using off-

/43 /the-shelf sensors deployed on a light aircraft platform.

/44 /1.2. Rationale

/45 / Spatial data may be acquired with the intention of characterising a site at a single

/46 /date or the intention may be to monitor the site to observe the nature and degree of

/47 /change. Achieving the required coverage and accuracy for either application using

/48 /conventional ground-based survey methods alone is often either impractical or

/49 /excessively expensive particularly in heterogeneous environments (Um and Wright,

/50 /1996). Remotely sensed, multi-spectral imagery (typically imagery with four or more

/51 /bands, for example blue, green, red and near-infrared (NIR)) can significantly

/52 /improve the quality or reduce the cost of site characterisation and monitoring.
/53 /Multi-spectral imagery can be used as a primary data source, for example in

/54 /vegetation surveys or as a secondary source to structure the pattern of ground-based

/55 /surveys maximising the benefit of the sampling. Multi-spectral data may also be

/56 /usefully employed as ‘carrier surfaces’ for the spatial interpolation of point survey

/57 /data to give mapped coverage (Wright and Birnie, 1986; Leone et al., 1995).

/58 / The market for remotely sensed data and services has grown approximately 6%

/59 /per annum between 1994 and 1997 (Olby, 1999). The rate of growth it is, however,

/60 /lower than had been predicted given the increasing number and sophistication of the
/61 /sensors available (ESA-ESRIN, 2002). The importance is recognised of spatial data

/62 /for planning the management of environmentally sensitive areas (Wascher, 2000).

/63 /For such applications, however, the take-up of remotely sensed data is hampered by

/64 /the lack of clear financial benefits to offset against the costs of a monitoring

/65 /programme. There remains an unfulfilled requirement for a sensor system that can
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/66 /be inexpensively purchased, deployed and analysed (Tarussov et al., 1996; Thomas,

/67 /1997).

/68 /1.3. Multi-spectral imagery sources

/69 / The most ubiquitous sources of multi-spectral imagery are satellite-based sensors

/70 /(Moran et al., 1997). Such sensors are capable of capturing imagery across a wide

/71 /spectrum (from ultra-violet to mid-infrared, 450�/1500 nm) and have steadily
/72 /increased their spatial resolution (for example the IKONOS satellite with a spatial

/73 /resolution of 1 m). Limitations of satellite systems include the fixed schedule of

/74 /coverage that may not allow imagery of specific events to be captured and the

/75 /significant cost of geometrically corrected data for the sensors with the best

/76 /resolution. The principal limitations of such systems for applications in western

/77 /Europe and other areas prone to cloud cover is, however, the lack of days on which

/78 /cloud free imagery can be obtained (Legg, 1991). Using airborne systems, it is

/79 /possible to obtain imagery from below high-level, evenly distributed cloud cover with
/80 /acceptable image quality degradation. Indeed depending on the season, image

/81 /quality may be improved by eliminating harsh shadowing.

/82 / A number of airborne multi- and hyper-spectral imaging systems have been

/83 /developed and tested during the last decade (Moran et al., 1997; Denniss and Bunn,

/84 /2000). The cost of these instruments and the commissioning costs of the aircraft in

/85 /which they are installed means that they can only be deployed by most land

/86 /managers on a contractual rather than an ownership basis. Even if the commission-

/87 /ing cost can be met, limits on the schedule of availability can mean the sensor has to
/88 /be deployed in less than ideal conditions. The quality of results from these systems is

/89 /impressive but the cost is prohibitive for most land managers.

/90 / Conventional aerial photography is one of the oldest and most widely-applied

/91 /forms of sensors, capable of providing information in the visible and NIR spectrum.

/92 /For multi-spectral imaging using conventional aerial photography two cameras are

/93 /usually required. The first captures images with the three visible bands (red, green

/94 /and blue) and the second either monochrome NIR or false-colour NIR (KODAK,

/95 /2001). Conventional photography provides a high quality product that is compatible
/96 /with analysis by digital photogrammetry. For NIR photography optimising negative

/97 /exposures, maintaining stocks of IR film and the availability of processing facilities

/98 /can be problematic. The need for a second camera increases the capital cost and

/99 /potentially makes operational deployment more difficult.

/100 / An alternative to conventional aerial photography as a source of imagery is the

/101 /video camera. Off-the-shelf video cameras are commonly used by video survey

/102 /companies, but mainly to give a visual check of ground conditions. Mass production

/103 /of video cameras has reduced their capital cost, they are simple to operate and, since
/104 /25 frames are captured every second, it is possible to extract stereo coverage without

/105 /the need to explicitly capture overlapping images using an intervalometer (Vlcek,

/106 /1983). The utility of video cameras for airborne remote sensing can be limited by

/107 /their image capture process, with images blurred or smeared due to the movement of

/108 /the sensor platform. Video cameras’ spectral sensitivity is in many cases permanently
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/109 /limited to the visible spectrum. Frame selection and capture from video tape can be

/110 /time consuming and geometric rectification may be hampered by lower quality

/111 /camera optics.

/112 /1.4. Approach adopted

/113 / This paper describes a multi-spectral imaging system using NIR imagery, captured
/114 /by an improved video camera, merged with conventional metric aerial photography.

/115 /The imaging system is suitable for deployment on a light aircraft platform. All the

/116 /components of the imaging system and the process used to convert the imagery into

/117 /geo-referenced data use off-the-shelf technology with the aim of minimising all costs

/118 /while achieving an acceptable image quality.

/119 / The paper sets out the salient features of video cameras for airborne imaging

/120 /applications, in particular the recent improvements in spectral response, resolution

/121 /and image capture. The components of the imaging system are then detailed, with
/122 /particular focus on the characteristics of the video camera employed. Issues of

/123 /operational deployment, data processing and digital image processing are also

/124 /presented. The results of tests comparing the image quality of conventional and the

/125 /improved video camera are given. Examples of the initial airborne testing of the

/126 /system are also presented. The aim for this testing was to examine the practicality

/127 /and cost of combining imagery from the metric camera with the IR video data, in

/128 /particular the creation of false-colour IR composites for visual interpretation and

/129 /vegetation indices suitable for use in quantitative analyses.

/130 /2. Video image gathering

/131 / Several developments in the field of videography are relevant to the development

/132 /of an airborne multi-spectral site characterisation system, in particular the control of

/133 /exposure using automatic gain control (AGC), the alternative image capture

/134 /strategies and electronic shuttering.

/135 /2.1. Automatic gain control

/136 / Effective imaging of varied terrain requires a camera capable of capturing a wide

/137 /range of feature brightness across its spectral range. The AGC compensates for

/138 /changes in light intensity. AGC means that in all but exceptional circumstances the

/139 /video camera can cope with the range of lighting conditions experienced during the

/140 /mission without the need to vary the aperture setting of the lens. This is particularly
/141 /useful for airborne applications as it eliminates the need for powered, auto-iris lenses

/142 /which add to the cost, bulk and power requirements of any system. AGC simplifies

/143 /the task of processing imagery into a single mosaic by reducing differences in

/144 /exposure between individual images and between flight lines. AGC also improves the

/145 /quality of the imagery achieved by increasing the digital number (DN) range of

/146 /values (Richardson et al., 1992).

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/

G.G. Wright et al. / Computers and Electronics in Agriculture 00 (2002) 1�/244

ARTICLE IN PRESS



UNCORRECTED P
ROO

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/

F
ig

.
1

.
F

ra
m

e
a

n
d

in
te

rl
in

e-
tr

a
n

sf
er

C
C

D
s

(a
ft

er
M

a
cD

o
n

a
ld

,
2

0
0

1
).

G.G. Wright et al. / Computers and Electronics in Agriculture 00 (2002) 1�/24 5

ARTICLE IN PRESS



UNCORRECTED P
ROO

/147 /2.2. Image capture

/148 / Images are captured in video cameras using charge-coupled devices (CCDs) (Fig.

/149 /1(a)). Progressive-scan CCDs capture a whole image simultaneously with full vertical

/150 /and horizontal resolution. In contrast, interlace CCDs capture an image in two half

/151 /resolution phases. The delay between these image capture events can lead to blurring

/152 /of objects moving across the field of view. Two types of CCD support full frame
/153 /capture, interline-transfer and frame-transfer (MacDonald, 2001). These CCDs

/154 /differ in their approach to translating the charges from the pixels into a video signal.

/155 /After transfering the pixel charges to the vertical shift registers, the interline-transfer

/156 /CCD passes the charges to a horizontal shift register to form a single line of the video

/157 /image, Fig. 1(b). These lines are integrated by the cameras electronics to form a

/158 /standard video signal. Frame-transfer, by contrast, transfers charges vertically

/159 /within the CCD, in effect the CCD acts as its own vertical shift register, Fig. 1(c). In

/160 /addition to the horizontal register the frame capture CCD has a storage area where
/161 /charges from the CCD are accumulated before they are passed to the horizontal

/162 /register. The significant difference between interline and frame-transfer CCDs for

/163 /airborne imaging is that frame-transfer CCDs require additional mechanical rather

/164 /than integrated electronic shuttering to eliminate image motion. Mechanical

/165 /shuttering increases the cost and weight of the lenses required and decreases

/166 /reliability.

/167 /2.3. Electronic shuttering

/168 / The quality of images captured by progressive-scan, interline-transfer CCDs is

/169 /improved by the incorporation of an electronic-shutter mechanism. The duration of

/170 /the charge accumulation, (effectively the duration that the CCD is exposed for), is

/171 /fixed and set manually, with a range typically between 1/50 and 1/16 000 of a second.

/172 /The very short exposure times can be achieved without increased bulk or loss of

/173 /reliability since the shutter employed is electronic rather than mechanical.

/174 / The time taken to capture an image is independent of that required for data
/175 /processing. The CCD still captures a standard 25 frames every second but each

/176 /image can be the product of an exposure lasting 1/16 000 of a second. The video

/177 /signal from the CCD is usually adjusted by an AGC within the camera to give best

/178 /possible image quality within the constraints of the shutter speed and lens aperture

/179 /chosen.

/180 / The electronic shuttering combined with AGC and lens aperture settings give a

/181 /wide range of options for ensuring optimal picture quality. The benefits of the

/182 /progressive-scan CCD with electronic-shutter and AGC are particularly noticeable
/183 /in the reduction of image motion, discussed in the following section.

/184 /2.4. Image motion, shutter speed, and ground resolution cell

/185 / Image motion, seen as blurring or smearing, occurs due to aircraft forward

/186 /motion, roll, pitch, yaw and as a response to various frequencies of vibration while
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/187 /the shutter is open. The degree to which the image is degraded is determined to a

/188 /great extent by the duration over which the image is obtained. In videography, this is

/189 /determined by either the shutter speed or the scan rate depending on the CCD

/190 /employed.

/191 / Even for short exposure or scan times, there will always be image motion due to

/192 /the continuous movement of the platform. Tolerable image motion may be usefully

/193 /determined by calculating the ground resolution cell (GRC) for the sensor and
/194 /relating this to the speed of movement of the platform. The GRC is the size of the

/195 /minimum resolvable target for the combination of: ground clearance; resolution and

/196 /dimensions of the CCD and the focal-length of lens used. The relationship between

/197 /these factors can be formulated as follows:

198 GRC�GS=LR

where G is the ground clearance (m), S is the size of the CCD array across the swath

/199 /(m) (for CCDs with rectangular rather than square elements the GRC will be

/200 /orientation specific), L is the lens focal-length (m), R is the resolution (the number of

/201 /CCD pixels across the swath). Fig. 2 shows the relationship of ground clearance to

/202 /ground resolution for three lenses (8, 16 and 25 mm) deployed on a generic CCD.

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/

Fig. 2. Relationship of ground resolution and ground clearance for three lens sizes using a generic CCD
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/203 / A heuristic for tolerable image motion is that less than half a pixel is acceptable.

/204 /Assuming a typical light aircraft travelling at around 130 km h�1 (or 36 ms�1) and a

/205 /period of 1/25 of a second to capture the image, then the distance travelled by the

/206 /aircraft is 1.44 m. The shaded zone of the graph in Fig. 2 shows the 1.44 m zone with

/207 /the darker shading showing the half distance of 0.72 m. As the practical ground

/208 /clearance is 2000 m, in all but cloud free conditions, it is clear that conventional

/209 /interlaced CCD cameras, operating at 1/25 of a second, can suffer significant image
/210 /motion. Electronic-shutter CCDs taking images in 1/2000 of a second will, in

/211 /contrast, experience negligible image motion. This makes them highly suitable

/212 /components of an airborne imaging system.

/213 /3. Image analysis

/214 /3.1. Data fusion

/215 / Data fusion typically involves combining remotely sensed imagery from different

/216 /portions of the electromagnetic spectrum or imagery with other data sources such as

/217 /digital elevation data (Guneriussen et al., 1996). Data fusion may also combine data

/218 /with different spatial or temporal resolutions linking them to a common map base,

/219 /and if necessary re-sampling them to a common spatial representation (Chavez,

/220 /1991). The aim of this process is to combine images in such a way that resulting

/221 /outputs provide either improved visualisation of the phenomena being investigated

/222 /or allow the integrated analysis of both datasets to improve the results achieved. The
/223 /fusion process does not create new information but rather arranges data such that its

/224 /information content can be more easily accessed. When sources of visible spectrum

/225 /data and NIR can be brought together then it is possible to consider, for example,

/226 /using a range of vegetation indices for site characterisation purposes.

/227 /3.2. Site characterisation with vegetation indices

/228 / Remote sensing has long been used for estimating vegetation attributes, a strong
/229 /correlation existing between the ratio of NIR to red reflectance (IR/R) and the

/230 /vegetation’s leaf area or biomass (Kanemasu et al., 1974). The more robust

/231 /vegetation index is the normalised difference (spectral) vegetation index (NDVI).

/232 /A number of formulations exist for calculating NDVI but generically

233 NDVI�((InfraRed�Red)=(InfraRed�Red))SF;

where InfraRed and Red are the infrared and red image values and SF is a scaling
/234 /factor used to convert the floating-point ratio values into integers between 0 and 255

/235 /for display. The ratio has a range of values from �/1.0 to �/1.0. Higher NDVI values

/236 /indicate larger quantities of plant biomass. The transition from vegetated to bare soil

/237 /conditions occurs around the zero NDVI value but is dependent on the DN range of

/238 /the sensor(s) employed.
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/239 / NDVI is strongly correlated with the fraction of photosynthetically active

/240 /radiation intercepted by the canopy (Hatfield et al., 1984) and a near linear

/241 /relationship exists between NDVI and both leaf area and biomass. The index has

/242 /been used as an input to a rangeland-management tool to assist the setting of

/243 /appropriate stocking densities to preserve the vegetative diversity of a rangeland

/244 /(Wright et al., 1997).

/245 /4. Materials and methods

/246 /4.1. The CCD video camera

/247 / The CCD camera system used was the monochrome PULNiX TM765i2, shown

/248 /with the other components of the system in Fig. 3. The TM765i is typical of CCD

/249 /cameras developed by PULNiX and other manufacturers to meet the needs of the
/250 /industrial-vision and surveillance markets. These instruments, available off-the-shelf,

/251 /are ideal components for a reduced-cost imaging system.

/252 / The video camera has an electronic-shutter mechanism, providing a sharp picture

/253 /at speeds (between 1/50 and 1/16 000 s) without smearing or blurring. In order to

/254 /maintain an acceptably bright image, a shutter speed of 1/2000 was used with

/255 /optimum exposure maintained by the AGC.

/256 / The TM765i CCD has a resolution of 756x581 pixels and was deployed with a

/257 /Pentax 8.5 mm CCTV lens at a ground clearance of 1000 m giving a GRC of 0.38 m.
/258 /The CCD has a strong response across a wide wavelength spectrum. This is

/259 /illustrated in Fig. 4 showing that for NIR radiation the CCD has a 50% response

/260 /when compared to the potential for visible light. This is a significant improvement on

/261 /previously available CCDs which typically had a 10�/20% relative response. For the

/262 /purposes of the development study, a visually opaque 750 nm NIR filter (Kodak

/263 /Wratten 88A) was used to isolate the NIR band.

/264 / The TM765i is 42�/32�/130 mm3 and weighs 190 g. This compactness simplifies

/265 /the operational deployment of the camera on a light aircraft platform since
/266 /structural modification is not required. The small size and weight of the camera

/267 /also makes it possible to consider deploying the camera from even lower cost

/268 /platforms such as blimps, kites and model aircraft with limited payloads (Silbernagel

/269 /et al., 1998; Benton, 2001; Cousins, 2001).

/270 /4.2. Operational deployment

/271 / The video camera was paired with a medium-format (120/220) metric camera, a

/272 /Rolleiflex 60063 fitted with a Zeiss Planar f2.8/80 mm lens. This allowed the capture

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/
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/273 /of four bands of information: red, green and blue from conventional colour film and

/274 /NIR from the video camera.

/275 / For the metric camera system, a rig had been designed that attaches to the front

/276 /seat rails of a Cessna 172 (Ekin and Deans, 1986; Ekin, 1987). When over the target

/277 /this carriage is moved out through a window fitted into the base of the door. The rig

/278 /is required to be retractable as when deployed it introduces significant drag to the

/279 /aircraft. The rig for the video camera is a pod attached to the aircraft door so as to

/280 /be in-line with the conventional camera when it has been deployed. From the pod, a

/281 /power cable runs to a high capacity (3�/4 h) 12 V battery pack within the aircraft. A

/282 /second cable runs from the TM765i to a Sony portable Hi8 Video Walkman. Battery

/283 /power was used for both video camera and recorder since fluctuations in the power

/284 /from the aircraft tended to reduce the image quality achieved.

/285 / Fig. 5 shows external and internal views of the camera rigs. The external views

/286 /show the metric camera rig deployed as it would be during image capture and the

/287 /pod used to house the video camera. The internal view shows the controls for the

/288 /metric camera (on a single board near the camera) and the video recorder/monitor.

/289 /Simultaneous operation of the metric and video camera only requires the pilot to

/290 /power on the video camera and recorder to begin recording and then concentrate on

/291 /the operation of the metric camera.

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/
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/292 / Flight lines are pre-planned to give the desired stereo coverage with the metric

/293 /camera, (approximately 60% overlap-lap and 10% side-lap). The video recorder is

/294 /left running continuously during the course of the flight lines with individual frames

/295 /captured on return to base. The coordinates for the start-, way- and end-points of the

/296 /flight lines are stored in the GPS based navigational system. Once the aircraft is set

/297 /on the required heading the metric camera is triggered at fixed time intervals by an

/298 /intervalometer along the flight line (Ekin, 1994).

/299 /4.3. Data processing

/300 / The land-management application may require real-time monitoring, simple visual

/301 /identification of phenomena, field-map navigation in collaboration with other media

/302 /or a fully map-referenced product. Fig. 6 shows the process used to turn the raw data

/303 /from the metric- and video-cameras into digital images suitable for manipulation by
/304 /photogrammetric and image processing software.

/305 /4.3.1. Image capture

/306 / The medium-format metric camera films were developed and printed. The prints

/307 /were then scanned on a HP 7440c flatbed scanner giving raw full-colour images of

/308 /900�/900 pixels with 24 bits per pixel (2.43 Mb per image).

/309 / The data processing of the video camera data is a two-stage process, identifying
/310 /the frames required and then capturing them as digital images. Frame identification

/311 /requires the replay of the video tape to identify the frames required. This means the

/312 /matching of the features on the video tape either with existing imagery or baseline

/313 /mapping. Individual frames are converted from analogue (on the video tape) to

/314 /digital format (on the PC hard-drive) using a frame-grabber; in this case the

/315 /Quantum Snapmagic4. The images captured are single-band (8-bit) with the full

/316 /sensor resolution (0.44 Mb). This low-cost unit can capture up to one frame every 2

/317 /s. To achieve the appropriate image overlap, a frame is grabbed once every 5�/10 s
/318 /depending on the aircraft ground speed.

/319 /4.3.2. Digital image processing

/320 / Two software packages were used for creating site coverage, ImageAssembler5 and

/321 /Orthobase6. ImageAssembler is a share-ware package for creating composite images,

/322 /typically from sets of digital photographs. It mosaics images together by rubber

/323 /sheeting the images, using two tie points per image. This mosaicing operation does

/324 /not create a geo-referenced image.
/325 / Orthobase was also used to create a seamless mosaic using the more sophisticated

/326 /ortho-rectification process. Ortho-rectification is similar to rubber sheeting but also

/327 /removes distortions in the imagery introduced by the sensor’s lens, platform attitude

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/
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/328 /and terrain. Removal of lens distortions uses data provided by metric-lens

/329 /calibration. Lacking such data for the TM765i lens, partial data (focal-length and

/330 /radial distortion) for a generic lens was used when rectifying the video-imagery7.

/331 /Removing terrain and attitude distortions uses: ground control points (GCPs),

/332 /features identified in the imagery with known x , y and z coordinates; tie points that

/333 /record the location of features between pairs of images and a digital elevation model

/334 /(DEM). Both the aerial photographs and the video camera images were linked to the
/335 /Ordnance Survey (OS) map base and with a DEM derived from the (OS) 5 m

/336 /contours dataset.

/337 / Once linked to the common map base and mosaiced, the RGB and NIR images

/338 /are brought together in a multi-spectral image stack within Erdas Imagine. This

/339 /enables the visualisation of false-colour composites (green, red and NIR mimicking

/340 /false-colour IR film), and allows the calculation of per pixel NDVI values using the

/341 /red and NIR bands.

/342 /5. Results

/343 /5.1. Ground-based testing

/344 / The series of images in Fig. 7 illustrate the reduction in blurring from image

/345 /motion achieved by the TM765i compared to a conventional video camera. The pairs

/346 /of images were taken from a moving vehicle (85 km h�1) using a conventional

/347 /shutterless video camera with an interlaced CCD (1a and 2a) and the TM765i (1b

/348 /and 2b), the TM765i images are NIR. The increased sharpness of the TM765i

/349 /imagery is particularly obvious for the near subjects (1a and 1b) though still

/350 /significant for the more distant scenes (2a and 2b).

/351 /5.2. Airborne testing

/352 / The images presented in this section are for an area of farmland and woodland in

/353 /North East Scotland, obtained on 15th September 1999 at midday, with a variety of

/354 /land covers identifiable.
/355 / Fig. 8 is a seamless mosaic of 11 TM765i images. The resulting image is not

/356 /referenced to a map base and retains distortions introduced by the terrain and the

/357 /camera optics. This means it is not possible to combine this TM765i image with

/358 /those from the metric camera. ImageAssembler does, however, allow the rapid

/359 /creation of site coverage that may be used to visually identify features of interest; the

/360 /11 image mosaic was created in only 15 min. This approach is potentially of use for

/361 /reconnaissance or as a secondary data source when used in conjunction with other

/362 /data referenced to a map-base.

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/
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/363 / Fig. 9 shows examples of the ortho-rectified metric and TM765i imagery. Fig. 9(a)

/364 /shows the medium-format metric colour-photography. Fig. 9(b) shows the NIR

/365 /imagery from the TM765i for the same site. It is noticeable that the TM765i imagery

/366 /appears less sharp than the metric colour-photography despite their identical 1 m

/367 /resolution. This is probably because the metric colour-photography was re-sampled

/368 /from a higher resolution. The DN range for the NIR imagery is 17�/246; this results

/369 /in a more than adequate level of contrast across the image.
/370 / Fig. 9(c) shows a false-colour composite of the metric and TM765i images. The

/371 /match for images shows no bleeding of colours characteristic of mis-registration.

/372 / Fig. 9(d) presents the NDVI image. For the fields identified in Fig. 9(d),

/373 /histograms are presented showing the proportion of each field with particular

/374 /NDVI values, Fig. 10(a�/d). Fig. 10(a) shows eight pasture fields, Fig. 10(b) two

/375 /fields with standing cereals, Fig. 10(c) three fields with bare soil or recently harvested

/376 /cereals and Fig. 10(d) a single fodder crop field. It is possible both from Fig. 10(a)

/377 /and visually in Plate 1(d) to contrast the degree of grazing of the pastures from
/378 /heavily grazed to ungrazed.

/379 /6. Discussion

/380 / The success or failure of an imaging system can depend less on the capital cost of

/381 /the equipment and more on the recurrent costs of data processing. Capital costs can

/382 /be amortised over the lifetime of the sensor. The costs of processing the raw imagery

/383 /into the form required for analysis has an immediate impact on individual projects.

/384 /Of particular significance is the amount of labour required.
/385 / Table 1 presents the costs of the two sensors deployed. The relative effort required

/386 /for ortho-rectification and two measures of the data quality, the maximum ground

/387 /resolution and the residual errors are also presented for the two sensors.

/388 /6.1. Capital costs

/389 / It is clear from Table 1 that the metric camera represents a large capital investment

/390 /and has higher calibration and consumables cost than the video camera. The

/391 /expense, weight and mechanical nature of the metric camera also means that it is

/392 /unsuitable for use in any platform less expensive than a light aircraft. The higher
/393 /capital, calibration and consumables costs must, however, be set against the lower

/394 /cost of processing the imagery to create survey coverage. The software required to

/395 /create geo-referenced maps is also significantly more expensive than that needed

/396 /create a photo-mosaic.

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/
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/397 /6.2. Cost and quality of survey coverage

/398 / While the costs of commissioning and flying a light aircraft based survey are not

/399 /inconsiderable, they are significantly outweighed by those of the labour-intensive

/400 /data processing of the imagery. Ortho-rectification is faster for the imagery obtained

/401 /with the metric camera firstly since fewer images per unit area are required.

/402 /Secondly, fewer GCPs are required to achieve a given level of accuracy as the

/403 /internal geometry of the metric lens is more accurately known, and since the metric

/404 /camera lens has less distortion. Distortions in the video camera imagery were only

/405 /eliminated by increasing the overlap between adjacent images, thereby utilising only

/406 /the central portions of each frame. The labour required to ground control and

/407 /mosaic the metric camera imagery is thus significantly less than that required for the

/408 /video camera imagery.

/409 / The need for larger numbers of GCPs may be difficult to meet in areas such as

/410 /semi-natural rangeland, where there are limited numbers of mapped features

/411 /available. In such areas, it may be necessary to collect additional ground control

/412 /information for features that are visible on the imagery but not mapped on the base-

/413 /mapping. This can be accomplished using differential GPS but does significantly

/414 /increases the cost of the final imagery.

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/

Table 1

Costs and features of the imaging system

Item Capital cost ($US) Depreciation period/straight-line cost per

annum ($US)

CCD camera, lens, video recorder,

peripherals

2250 5/450

Metric camera, lens, peripherals 12 900 5/2500

ImageAssembler software 66 3/20

Orthobase software 3000 3/1000

Survey costs CCD camera ($US) Metric Camera ($US)

Calibration (per annum) n/a 300

Consumables (per flight) 15 150

Commissioning (per flight) 450

Survey (per hour) 150

Data processing costs CCD camera Metric camera

Ground control (h km�2) c.18 c.7

Mosaicing (h km�2) c.6 c.4

Images (km�2) 27 18

GCP (pts. per image) 3.7 2.2

Data required DEM, Base-map,

dGPS(?)

DEM, base-map

Image analysis (h km�2) 2

Data quality CCD camera Metric Camera

Maximum ground resolution 1.0 m �/0.25 m

Rectification errors (xyz in m) 1.1, 1.1, 2.4 0.5, 0.5, 1.0
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/415 / For ground resolution, the metric photography is limited not by the resolution of

/416 /the sensor but by the accuracy of ground control. Where accurate ground control is

/417 /available, particularly feature elevation values, imagery from the metric camera with

/418 /0.25 m resolution has been rectified successfully (Miller et al., 1994). For the metric

/419 /imagery used here, the mean errors in x - and y -axes were acceptable, being half the

/420 /resolution of the rectified imagery. For the video camera imagery, despite the

/421 /additional ground control used, the errors were approximately double the metric
/422 /photography. Developments of the video camera component of the system will focus

/423 /on reducing these errors by using lenses with improved optics and if necessary

/424 /calibrated lenses.

/425 /6.3. Alternative tools and methodologies

/426 / Alternatives to the data capture methods used here are possible depending on

/427 /equipment available. In particular professional quality digital stills cameras are

/428 /becoming avaliable with sufficient resolution (for example the Nikon D1x, with 5
/429 /megapixel resolution). These have the advantage of maintaining an entirely digital

/430 /workflow, eliminating the processing and printing phases that are time consuming

/431 /and potentially introduce additional distortions to the imagery. Digital stills cameras

/432 /eliminate: the need for access to a professional quality photographic processing

/433 /laboratory, the delay between capture and analysis that can be unacceptable for real-

/434 /time monitoring applications and the risk of in-transit risk of damage to light-

/435 /sensitive media. Such cameras, do however, represent a substantial investment (6750

/436 /$US) and the workflow benefits may not outweigh the costs of replacing existing
/437 /equipment. If required, film-based medium-format metric cameras can still deliver

/438 /image resolution significantly greater than even the best digital stills cameras.

/439 / If a film-based image is captured then negative scanning avoids the distortions

/440 /introduced by printing and may also improve the dynamic range of colour values

/441 /achieved. Negative scanners with sufficient resolution are becoming increasingly

/442 /available at decreasing cost. The errors in geo-referencing introduced by flatbed

/443 /scanning of a print are, however, in most cases negligible. With the limited numbers

/444 /of GCPs available in rural imagery the residual errors from the ortho-rectification
/445 /process are at least an order of magnitude larger than those introduced by flatbed

/446 /scanning. Furthermore, clients frequently specify hard copy prints in addition to the

/447 /digital products. Partly this is for convenience of use in field or office-based

/448 /discussions, but is also a product of the aesthetic appeal of analogue prints with their

/449 /sharp edges and ability to resolve very small features. This aesthetic appeal operates

/450 /despite knowledge that the resolution of conventional photographic imagery is far

/451 /greater than necessary to provide an adequate basis for most land-management

/452 /decisions.
/453 / Video image capture may be significantly simplified by the use of a digital video

/454 /recording device, again increasingly available at low-cost. Digital video recording

/455 /means that individual video frames may simply be sampled direct from the recorder

/456 /and used immediately within a digital image processing system. Data processing for

/457 /digital video data simply becomes a matter of frame identification.

Y:/Elsevier Science/Shannon/Compag/articles/Compag1692/
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/458 / The process of frame identification from video imagery can be time consuming,

/459 /particularly with the less familiar NIR band. The use of contemporary stills imagery,

/460 /in this case from the metric camera, while not essential, does significantly help in the

/461 /identification of the start and end points of the flight lines. The success of fixed-

/462 /interval frame-grabbing depends on the skill of the survey pilot in maintaining a

/463 /steady rate of advance and the flight conditions being relatively calm or at least not

/464 /gusty. The process of frame-grabbing could be semi-automated by tagging frames
/465 /with GPS coordinates.

/466 /7. Conclusions

/467 / Combining video camera imagery with metric aerial photography has provided a

/468 /method of collecting high-resolution, multi-spectral imagery with potential utility for

/469 /decision support and land-management. The quality of imagery achieved to date has

/470 /been evaluated as visually acceptable, with none of the characteristic blurring

/471 /associated with earlier videography and achieving a good match between the two

/472 /data sources and the map base features. Since the system can be implemented using

/473 /off-the-self components it has a capital cost lower than comparable custom-built
/474 /systems. The processing costs are principally defined by the labour required. The

/475 /amount of labour required depends firstly on whether a geo-referenced product is

/476 /needed and secondly on the accuracy required. Improvements to both image

/477 /recording hardware and the software used to process imagery can, based on recent

/478 /experience, be expected to reduce the labour required per unit area.
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