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ABSTRACT 
 
 
This paper investigates the use of photogrammetric camera and IR videography data to improve the design of field 
survey sampling frameworks. Spatial data collection can contribute up to 80% of the cost of deploying a GIS 
(Geographic Information System) based land use decision support system. The use of remotely sensed information 
and geostatistical methods combined with field survey using dGPS (differential Global Positioning System) is 
expected to maximise data quality while minimising costs. The remotely sensed data used were medium format 
colour photography and IR (Infra-Red) videography. These were orthorectified to the national (Ordnance Survey) 
map base and mosaiced using ERDAS Imagine. ERDAS Imagine was also used to combine the blue, green and red 
layers of the colour photography with the IR videography into a single four layer image. The stratified sampling 
strategy adopted to date allocates four points per hectare randomly within individual field boundaries. The sample 
points, generated within ArcView, are located using dGPS. The data are then interpolated to a grid using 
geostatistics. A second strategy uses the remotely sensed information to identify within-field variability by means of 
classified soil or NDVI models. The sample sites are sub-stratified (at 4 per hectare) by variability classes with a 
minimum mapping unit of 0.25 hectare. Both strategies were employed at a test site and the results evaluated against 
validation samples collected on a 100m grid. The use of the remotely sensed information ensured that the survey 
sampled the range of within-field variability. 
 
 

INTRODUCTION 
 
 
 Decision Support Systems (DSS) have been developed in response to increasingly complex financial, social 
and environmental goals of which land managers need to take account. Competition, regulation of land use, public 
awareness and changes in land ownership are factors identified as creating an increase in the demand for multi-
objective land-use planning (Matthews et al, 1999). Critical in producing an effective, DSS for rural land use 
planning is the use of accurate data for characterising a site, such as its soils, which are collected from ground based 
surveys. However this can be costly, with the majority of the financial burden being carried by the client. It would 
therefore be beneficial to reduce the costs of data collection but still maintain the accuracy within the DSS. By using 
remotely sensed data it has been shown that the accuracy of the DSS could be improved (Moran et al, 1997) and/or 
the intensity of soil sampling frameworks could be reduced (Stein, 1998). 
 One problem in the use of a random, or grid based soil survey is the recognition of within-field variability. 
To account for such variability, studies have been conducted in which the sampling of soils is stratified using 
existing sources of information such as land use, soil maps units, a combination of both (Brus, 1994) and remotely 
sensed data. With respect to DSS, there is the additional problem of obtaining up-to-date information. Land use or 
soil maps may have been compiled many years previously and their accuracy may be questionable because the 
boundaries of various map units may have changed. These units may also not be a suitable basis for sampling the 
soil property of interest. Remotely sensed information offers the advantages of providing timely data collection and 
with the recent advances in sensor and image processing technology, with increasingly cost effectiveness. 
 The primary motivation behind choosing to combine medium format colour photography with IR 
videography is the flexibility it offers, particularly with regard to the timing of the capture and the scale of the 



imagery, which are both important considerations. Although the costs of the purchase and processing of satellite 
imagery are reducing such that its use has become a more practical proposition for more people, there remains the 
difficulty of obtaining suitable images for Britain. In particular, weather conditions, especially cloud cover, limit the 
opportunity for capture of useable imagery. However, both the medium format metric camera and the IR video 
camera used in this paper, are deployed on a light aircraft which can be opportunistically tasked whenever 
conditions are acceptable. Aerial videography offers low-cost data acquisition with the flexibility of digital format, 
enabling the rapid processing of images, whilst conventional medium format colour aerial photography obtained 
using a calibrated lens can be accurately orthorectified with relative ease due to advances in software development. 
 The extraction of information from remotely sensed data is enhanced when it is combined with other data 
for the same area. The delimitation of units of within-field variability units, derived from soil and vegetation indices, 
can then be used to stratify sampling frameworks in a similar manner to the land use and soil maps used previously. 
The advantage of using the remotely sensed information is that it is up to date and not as subjective as land use and 
soil maps. 
 This paper proposes a methodology for designing soil sampling frameworks based on the integrated use of 
medium format colour photography and IR videography. The paper first presents the methodology adopted for the 
preparation and integration of the image data and then details the approach taken to structuring the soil sampling 
frameworks based on models of within-field variability. Two sampling strategies are then compared, one using 
variability classes identified with the remotely sensed imagery and the second using the field as the sampling unit. 
The effectiveness of the two sampling strategies is compared using the prediction accuracy of soil maps, 
geostatistically interpolated from the two sampling frameworks. Finally conclusions are drawn on the use of 
medium format colour aerial photography and IR videography for site characterisation within a DSS. 
 



METHODOLOGY 
 
 
 The methodology used to combine photogrammetric camera imagery and IR videography to define within-
field soil sampling frameworks is detailed in Figure 1.  
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Figure 1. Outline of methodology employed 

The flow chart details the sequence of procedures employed, from image capture through to the validation 
of the outputs from the two sampling strategies. The raw images are geometrically corrected (to an Ordnance Survey 
map base), mosaiced and then combined. Variability within bare soil and vegetated fields is highlighted and 
classified by processing the layers within the image. The variability is further defined within a GIS to produce 
‘variability units’ within the field, which are then used to substratify the random samples. The substratified sampling 
framework is evaluated, for a given soil physical property, against a simple (by field) stratified framework and a set 
of validation samples, using geostatistical techniques. 



Imagery Preparation 
 Medium Format Colour Aerial Photography.  
The colour aerial photography was obtained using a 
Rolleiflex 6006 metric camera with a Planar f2.8/80mm 
lens. The resulting 5 x 5” hardcopy prints (with a nominal 
ground scale of 1:5000) were flat-bed scanned at a 
resolution of 600 pixels per inch. 
 The colour photography was orthorectified using 
the ERDAS Imagine OrthoBASE software. The 
calibration information available for the camera, including 
interior orientation parameters, means that typically only 3 
ground control points are required per image. A total of 20 
ground control points were needed for the block of 
imagery and collected using digital map data. Terrain 
distortion was removed using a 5 m resolution Digital 
Elevation Model (DEM) derived in ESRI ArcInfo from 
1:10,000 scale digital contour data. The colour 
photography was resampled to a resolution of 1 m using 
the nearest neighbour method. Figure 2 is an example of 
the orthorectified and mosaiced image from the test site 
detailed in the Testing section of the paper. 
 IR Videography.  The IR videography was 
captured using a PULNiX TM765i (2/3 inch CCD array, 
with 756 x 581 pixels) video camera fitted with a 
Cosmicar f1.5/8.5mm lens and filtered using a Kodak 
Wratten 88a filter. The data was recorded on a Sony GV-
S50E portable Video8 recorder. Individual frames with 
60% overlap were manually selected and extracted using 
the SnapMagic framegrabber. Survey coverage was 
created by orthorectification, using ERDAS Imagine 
OrthoBASE and mosaicing using ERDAS Imagine. Figure 
3 shows an example of the imagery derived from the IR 
videography for the test site used in this paper. The image 
was derived from six frames, resampled to 1m using a 
nearest neighbour interpolation algorithm. 

Figure 2. Orthorectified and mosaiced colour 
photography 1:5000 

 Orthorectification of IR videography was greatly 
enhanced and simplified by ERDAS Imagine OrthoBASE 
software, which can compensate for the lack of camera 
calibration information associated with videography. 
Initial attempts at rectifying the IR videography imagery, 
however, pointed to the need for a significantly larger 
number of ground control points (45) compared with the 
metric medium format photography. Additional ground 
control points were collected using dGPS where 
insufficient could be obtained from mapped features. 
Terrain distortion was removed using the 5m resolution 
DEM. The errors associated with the exterior and interior 
orientation parameters in the triangulation results remained unacceptable despite the additional ground control. 
These were, however, subsequently greatly reduced when the lens manufacturer provided generic calibration data 
(particularly a more accurate estimate of focal length and radial distortion) and a full specification of the CCD array 
(enabling a precise specification of CCD pixel size). The final orthorectified images were overlaid with the map 
base data and visually inspected for any mismatch. 

Figure 3. Orthorectified and mosaiced IR 
videography 1:5000 

 Image Mosaicing and Data Fusion.  The images within the two datasets were mosaiced in ERDAS 
Imagine to create two continuous images. Prior to mosaicing the histograms of all images were matched to that of a 
central image, using a histogram match function in ERDAS Imagine. The red and green layers of the colour aerial 
photography were added to the single layer of the IR videography, to create a three layer image. 



Deriving the Sampling Frameworks 
 The first application of the fused datasets was to characterise variability within two example vegetated and 
bare-soil fields and to use the information on the variability to guide the design of a soil sampling strategy. 
 Variability Characterisation –Vegetated and Bare Soils.  The variability of the vegetated field was 
characterised using a Normalised Difference Vegetation Index (NDVI). The fact that green vegetation has low 
reflectance at visible red wavelengths and high reflectance at near infrared wavelengths is the basis of a variety of 
vegetation indices. Variable look angle and illumination may affect a simple ratio index, i.e. the division of the near 
infrared band by the red band, the NDVI attempts to minimise these effects. 
 
 

NDVI = (((Infrared – Red) / (Infrared + Red) + 0.05) 100) 
 
 The variability of the bare-soil field was characterised using a simple model of red band minus green band. 
 Classification.  The NDVI and soil model images were processed to produce five classes in each dataset, 
by using an unsupervised classification. The unsupervised classification was used because of the lack of available 
ground truth data. Each field was classified separately to ensure that only the within-field variability was accounted 
for. Each classified image was then filtered using a 7 x 7 median filter. 
 Conversion to Polygons and Merging.  The classified and filtered images were converted into polygon 
coverages to allow further analysis within a GIS environment. The default sampling density specified for the 
application was four points per hectare (10,000 m2), the minimum sampling area was 2500 m2. Consequently, no 
polygon with an area less than 2500 m2 could be assigned a sample location since the area is below the minimum 
sampling area specified. All polygons with an area less than 2500 m2 were merged with the largest nearest 
neighbouring polygon of the same class to ensure that all of the output polygons were greater than the minimum 
specified sampling area. 
 Sub-Stratified Sampling Framework.  Sampling sites were randomly generated within each polygon, using 
a customised Avenue script in ArcView. It was specified that no points should be within two metres of another 
sample location, field boundary and variability polygon boundary. This was to take account of the accuracy of the 
dGPS (+/- 1m), which was used to locate the sample sites in the field. 
 
 

TESTING 
 
 
 The effectiveness of the remote sensing based sub-stratification framework was compared with a simpler 
field based stratification strategy for a test site at Newton Rigg in NW England. For this study the imagery was 
captured in July 2000, at an altitude of 1737 m (5700 ft), with a nominal scale of 1:5000. Capturing the images at 
this time of the year reduced the effects of shadowing and the fields were also in a condition that allowed the 
analysis of both vegetated and bare soil fields. Both sampling strategies were employed for two fields within the 
study area, Ling Field, a bare soil field (at the time of imagery capture) and Cow Pasture, a vegetated field (at the 
time of imagery capture). A 100m grid based sampling strategy was used for validation purposes. 
 
Parameters Collected 
 At each sample site, measurements of soil physical parameters were taken, including site drainage, topsoil 
depth, soil depth, topsoil texture, subsoil texture, percentage stones and soil drainage. The measurements were made 
in accordance with the Soil Survey of Scotland Handbook (MISR, 1984) standards. Each sample site was located 
using a dGPS (LR12 Omnistar 3000), attached to a handheld GIS (PocketGIS on a Newton Message Pad 2100).  
 
Geostatistical Interpolation and Validation 
 To compare the two sampling strategies, predictions of the percentage stone content were produced for 
each field and for each strategy. Percentage stone content value was chosen. Each dataset was explored for spatial 
patterns by computing the omnidirectional variogram, directional variogram and anisotropy plots (Kaluzny et al, 
1998). If a trend was present and identified it was removed. The variogram was then computed and modelled. 
Ordinary kriging was then performed using the variogram results. The output of the kriging process were maps of 
the predicted percentage stone content of the soils and associated error maps. Each prediction map was compared 
against the validation dataset, collected on a 100m grid basis. 



 
RESULTS 

 
 
Colour Photography and IR Videography Data Fusion 
 

Cow Pasture. 
Grass field. 

Ling Field. 
Bare soil. 

Figure 4. Red, green and IR combined image, 
showing the fields studied. 

 
 By combining the red and green layers of the medium format colour photography with the single layer IR, 
as in Figure 4, variation can be seen within all the fields, including the two test fields, that is not visible in either the 
colour photography and/or the IR videography when viewed individually. Therefore, the within-field variability can 
be identified from the output of a combination of the different remotely sensed datasets output. 
 Soil and Vegetation Modelling.  The next step in assessing the visible variation was to employ the soil and 
NDVI models, which took into account specific spectral properties of soil and vegetation. 
 

a b

Figure 5. Output of the (a) vegetation model and (b) soil 
model

 
 



 Figure 5 (a) shows the output of the NDVI model. Contrast the very dark area to the west, a bare soil field 
with the central vegetated field. The level of brightness is indicative of the amount of biomass present, therefore the 
brighter a pixel the higher the biomass. Variation in biomass is clearly identifiable within the field. 
 Figure 5 (b) displays the output of the soil model. The central bare soil field is bounded to the south and 
east by vegetated fields, which show as the very dark areas. Patterns of variation are visible throughout the field. 
However, the variation seen is surface variation which may or may not be indicative of variation at depth. Soil 
variability classes arising from analysis of remotely sensed data may not correspond to soil map units derived from a 
traditional soil survey as traditional mapping units take into consideration properties at depths throughout the profile 
(Leone et al, 1995). 
 To further analyse the variation, the images were classified, using unsupervised classification. This had the 
effect of segmenting the images based upon the variation in the soil and NDVI model outputs.  

a b

Figure 6. Classified and filtered outputs of the vegetation (a) and soil (b) 
models 

 
 Post-processing of the images, with a spatial filter, was used to clarify the differences in the variation 
(Figure 6). 



Sampling Frameworks Comparison 

ba 

 
 
 

Figure 7. The random and subrandom sampling frameworks within Cow Pasture (a) and Ling Field (b). 
 
 Figure 7 shows the subrandom locations based upon the variability polygons derived from the classified 
images and also the random sample locations based upon the field unit. As a result of classification, filtering and 
merging, Cow Pasture (Figure 7a) has been divided into five units and Ling Field (Figure 7b) into four units. By 
stratifying samples using these units, the sampling locations are spread across the field (compared to the simple 
random samples). The differences are particularly noticeable where the units are complex in shape, for example, the 
orange unit in Figure 7a. However, complexity of the variability units can also be the cause of problems. As it was 
specified that no sample location should be within one metre of another sample location, field boundary and 
variability polygon boundary, narrow (2m or less) polygons sections have been effectively eliminated from the 
sampling area, for example, the polygon along the outer edge of Ling Field (Figure 7b). 
 



Geostatistical Interpolation and Validation 

a b 

Figure 8. Geostatistical interpolation of the subrandom (a) and random (b) datasets for Cow 
Pasture, overlain with the grid based validation (X) samples.

 
 Interpolation of the subrandom (Figure 8a and 9a) and random (Figure 8b and 9b) Cow Pasture datasets 
produce different maps of the distribution of percentage stones. When compared to the validation samples, seven out 
of the eight match the predicted surface generated from the subrandom dataset, whereas only three out of the eight 
match for the random dataset. The one validation point that did not match with the predictions had a percentage 
stone value of 10%, whereas the predicted surface assigned it a value of 15%. The differences between the values 
measured in the random dataset were quite different from those predicted, for example 30% compared to a predicted 
value of 10%. When compared back to the sample site locations (Figure 7a), this area is devoid of any random 
samples. 
 

Figure 9. Geostatistical interpolation of the subrandom (a) and random (b) Ling Field datasets, 
overlain with the grid based validation (X) samples. 



 
 For the Ling Field subrandom dataset, all of the validation points matched with the predicted values. 
However, for the random dataset, four out of the seven validation points matched with the predicted values. 
Differences between the actual values and predicted values were not as striking as the differences experienced in 
Cow Pasture. 
 The errors associated with the kriging predictions are shown in Figures 10 and 11. 
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Figure 10. Cow Pasture kriging errors for (a) subrandom dataset and (b) random dataset 

 
 The prediction error contours for the Cow Pasture subrandom dataset range from 0.8 to 7.7 and for the 
random dataset from 0.9 to 7.7. Although both sets of data show the same range of error, the spatial distribution 
varies. The majority of the field is encompassed by the 0.8 contour in the subrandom prediction. 
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Figure 11. Ling Field kriging errors for (a) subrandom dataset and (b) random dataset 

 
 



 The prediction error contour for the Ling Field subrandom and random datasets range from 3.8 to 7.1 and 
2.7 to 6.8 respectively. The subrandom dataset shows a higher degree of uncertainty associated with the predictions 
compared to the random dataset. The complex prediction contours for the subrandom dataset indicate that more of 
the variation within the field is sampled by the subrandom dataset. The uncertainty may also be accounted for by the 
fact that the variation observed in the remotely sensed data may not be correlated to the variation in the property 
under investigation. Accuracy of prediction may be enhanced by subsequently stratifying the interpolation using the 
derived variability units. Studies have shown that by using additional information during the interpolation process, 
prediction accuracy can be improved (Bárdossy and Lehmann, 1998). 
 
 

CONCLUSIONS 
 
 

This paper has presented the use of medium format metric aerial photography and IR videography to define 
sampling frameworks for soil survey. The aim was to reduce the cost or increase the accuracy of the mapping of soil 
properties to be used by land-use DSS. The colour aerial photography and IR videography images were 
orthorectified to a common map base and mosaiced to give survey coverage. Within-field variability was 
characterised using either vegetation or soil models. The classification of the outputs of these models provided the 
within-field stratification for the soil survey. 
 The use of light-aircraft mounted sensors enables four-band (R,G,B and IR) imagery to be captured at a low 
cost, reliably and at an appropriate scale. Difficulties in creating survey coverage from video images have been 
reported but advances in image processing software means that the problems of image mosaicing can now be 
overcome. The use of generic lens calibration data and engineering specifications for the video’s CCD array are 
particularly helpful in this regard. The successful orthorectification of the video imagery does however require 
significantly greater level of ground control. The semi-automated process of ground control point acquisition means 
that this increased requirement for ground control can be met without making excessive labour demands. Additional 
ground control (particularly for elevation) may be collected using dGPS, again at relatively low (and decreasing) 
cost. 
 Combing the red and green layers of the medium format colour photography with the single layer of the IR 
videography produced an image from which within-field variation could be analysed using soil and vegetation 
(NDVI) models. More information could be extracted from the combined image due to the reflectance properties of 
bare soil and vegetation. 
 Stratification of the soil sampling frameworks by the derived within-field variability ensured that more 
features and smaller scale features were sampled. This subsequently resulted in soil property maps which accounted 
for more of the variation within the field and were more accurate when validated against grid based samples. 
Finally, the use of the remotely sensed information ensured that the field survey sampled the complete range of 
within-field variability. 
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