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a b s t r a c t

Solar radiation is a driving variable for a wide range of processes in both natural and human

systems. On-site measurement of solar radiation is much rarer than for other meteorological

variables (approximately 40 sites of more than 2000 in the current UK network, with many of

these only having records in the last 10 years). Hence a number of models have been developed

to estimate solar radiation values based on more frequently observed variables such as

temperature and sunshine hours. One of the principal limitations of these methods is that

they require calibration using on-site measured solar radiation data and it is therefore open to

question how transferable these calibration values are to other locations. This paper follows

on from previous research that compared the performance of three models to estimate solar

radiation (Campbell–Donatelli, Donatelli–Bellocchi and Johnson–Woodward), and that con-

cluded the Johnson–Woodward (JW) model, estimating solar radiation values from sunshine

hours duration, had an overall superior performance for UK sites. The JW model has a single

empirical parameter (F) that indicates the intensityofdiffuse solar radiation from cloudyskies.

We investigate the use of spatial interpolation methods to provide estimates of F at locations

without solar radiation measurements. Six simple spatial interpolation methods were tested

with the best found to be ordinary kriging with first order polynomial trend removal. The

performance of the interpolations wasassessed using cross-validation. The magnitudes of the

errors from cross-validation were compared with the year-to-year variability of the F para-

meter and found to be acceptable for the intended application. The analysis indicated the

importance of stations near the geographic and altitudinal boundaries of the region, with

significant errors associated for sites that have greater cloud cover than would be expected

ir immediate vicinity. This suggested that other local factors may need

the spatial interpolation. The paper concludes by suggesting possible
from other sites in the

to be included within
improvements to the spatial interpolation methodology.

# 2007 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Rationale

There is an increasing requirement to provide simulation

models and field-based experimental analyses with site-
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specific weather variables. Since these data are expensive to

collect (or effectively impossible to collect when absent from

historical records), there is a consequent demand for methods

that can estimate the variables needed. These models may

either supplement limited data resources or generate entirely

new data sets. One example of a rarely observed, sparsely

available variable is global solar radiation, with records that
d.
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typically cover short time periods (Thornton and Running, 1999;

Bechini et al., 2000; Rivington et al., 2002) or are absent for a

particular place of interest (Grant et al., 2004). Solar radiation is a

key variable as it is the primary driver for photosynthesis,

evapotranspiration, surface energy budgets, etc. Hence the

substantial spatial and temporal gaps that exist in the

meteorological data record pose a handicap for a significant

number of applications where solar radiation data are required.

Examples include agricultural, ecological and hydrological

simulation modelling (Wilks, 1999; Hoogenboom, 2000; Lexer

and Honninger, 2004), field based biological research (Milne

et al., 2002), building design (Muneer et al., 2000a) and solar

energy systems. On-site observations of temperature and/or

sunshine duration are more numerous and tend to have longer

runs of years. There have thus been several approaches

developed that use these variables within models to estimate

solar radiation (see Section 2.1). The main limiting factor for the

applicability of such models is the need for the tuning of their

calibration parameters. While it is possible to use limited on-

site solar radiation records to calibrate models and subse-

quently generate longer runs of data, the use of such models for

sites without solar radiation data, depends on assumptions

about the transferability of calibration parameters.

1.2. Approach

This paper builds on a previous investigation that compared a

number of models that derived solar radiation (total down-

ward surface shortwave flux that includes direct and diffuse

solar radiation, So, MJ m�2 day�1) from other meteorological

variables (Rivington et al., 2005). This paper concluded using

data from 25 UK meteorological stations that overall the

Johnson–Woodward (JW) method (Johnson et al., 1995;

Woodward et al., 2001) was superior to other methods. There

were several caveats to this conclusion. First that the super-

iority was likely to be application-specific, in this case used

within a multi-crop simulation model CropSyst (Stockle et al.,

2003). Second, that the JW method has a small but systematic

bias in prediction with a seasonal pattern. Third, that the

empirical calibration factor (F) was site-specific and would

need to be estimated for sites without solar radiation records.

In this paper we address the latter concern by investigating

how successfully the F parameter can be interpolated between

sites. A range of spatial interpolation methods are parame-

terised and used to derive interpolated values for the long term

average (LTA) F parameter across Great Britain and Eire. The

spatial interpolations are tested using cross-validation and

contextualized by comparing the errors introduced by spatial

interpolation with the temporal variability of the F parameter.

Finally the effect of interpolation errors on calculation of solar

radiation (So) using the JW model is explored.
2. Related work

2.1. Solar radiation models

Numerous methods exist to estimate So using other weather

variables, i.e. air temperature (Bristow and Campbell, 1984;

Muneer et al., 1996; Hansen, 1999; Donatelli and Bellocchi,
2001), precipitation and air temperature (Castellvi, 2001) and

multiple variables such as sunshine duration, cloud amount

and temperature (Muneer et al., 2000b). These models require

some observed So data to enable calibration. Several methods

are available to convert observations of sunshine duration

(hours) into values of So (i.e. Ångström, 1924; Revfeim, 1997).

The Ångström method requires the estimation of site-

dependent parameters, normally using a regression method

(Sen, 2001). A number of hybrid models have been developed

based on the Ångström method (i.e. Bahel et al., 1987; Yang

et al., 2000a). Johnson et al. (1995) developed a sunshine

duration to So conversion method for use in tropical rainforest

canopies. This method was later applied by Woodward et al.

(2001) to pastures in New Zealand. This model accounts for

latitude, solar declination, elevation, day length and atmo-

spheric transmissivity on a daily basis and has only daily

sunshine duration (hours) and latitude as input. The method

contains a single empirical parameter (F) representing the

relative intensity of diffuse So from cloudy skies.

2.2. Model parameterisation and testing

Such models, regardless of their data inputs, are limited by

their requirement for site-specific parameterisation. Several

models exist as freely available software with parameter

optimisation functions (i.e. RadEst, 2005). These however,

have a minimal requirement for some observed So in order to

perform the optimisation process. There is therefore, a need

for methods to enable the spatial interpolation of empirically

derived, optimised, parameters to enable utilisation of

observed weather variables at sites where So is not available

for model parameterisation.

There are limitations in evaluating models when a single test

statistic (such as root mean squared error [RMSE]), or separate

multiple statistics are used (e.g. Yang et al., 2000b). A single

statistic will assess a particular component of model behaviour.

It is possible that a model can be deemed to produce unsuitable

estimates and rejected based on an assessment by one statistic

assessing one form of model performance, whilst other

attributes of the model may be desirable. Similarly a model’s

performance may be seen as accepted based on one statistic,

but still contain poor qualities not assessed by appropriate tests.

To resolve this, estimates of So made by the JW model have

previously been assessed (Rivington et al., 2005) using the fuzzy

logic based multiple-indices methods of Bellocchi et al. (2002).

This method calculates a single indicator (Irad) made up from a

number of individual indices representing different statistical

tests for model behaviour. Such an approach provides a more

comprehensive assessment of model performance.

2.3. Spatial interpolation

Spatial interpolation methods are employed to predict values at

unknown locations from a set of point data where the property

under investigation is known to exhibit spatial dependency. A

variety of related techniques exist, such as Inverse Distance

Weighting, Radial Basis Functions, and Kriging. These have

regularly been used in the study of environmental data, such as

soil properties (e.g. Uehara et al., 1985; Laslett et al., 1987),

temperature (e.g. Legates and Willmott, 1990; Lennon and
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Turner, 1995) and rainfall (e.g. Phillips et al., 1992; Hutchinson,

1995; Jeffrey et al., 2001). Differences between the techniques

relate principally to the way in which weights applied to

surrounding values are calculated. No single technique has

found universal favour; indeed many studies in geostatistics

have involved the comparison of techniques in order to assess

the applicability of interpolation methods for a given variable

(e.g. Dubrule, 1984; Voltz and Webster, 1990; Laslett, 1994;

Gotway et al., 1996; Schloeder et al., 2001). The selection of an

adequate interpolation method with appropriate parameters

for a particular application is considered crucial (Mitas and

Mitasova, 1998).

Inverse Distance Weighting (IDW) is an exact local

deterministic interpolation technique which assumes that

each point has a local influence that diminishes with distance

(Johnston et al., 2001). The value at any unsampled location is a

distance-weighted average of values at sampled points within

a selected search neighbourhood. The neighbourhood may be

defined by distance (and optionally direction), or by the

number of surrounding sample values to be included in the

interpolation. For dense datasets the search neighbourhood is

commonly defined by distance and direction, whilst with

sparse datasets the number of surrounding data points is

usually defined. Since the dataset in question in this study is

small, the latter option was chosen. The degree to which

sample values influence the value at the unsampled point can

be controlled by altering the power parameter (see Johnston

et al., 2001). This generates smoother or rougher surfaces, with

optimum values of the power parameter depending on the

number of neighbouring points included.

Radial Basis Functions (RBFs) are a series of exact local

deterministic interpolators which are generally used for

calculating smooth surfaces from data points. Conceptually,

the process involves the fitting of a flexible membrane to the

data points so that the total curvature of the surface is

minimised. They differ from IDW in that they allow the

prediction of values above the maximum measured value

and below the minimum measured value (Johnston et al., 2001).

The functions produce generally good results for gently varying

surfaces, but are inappropriate where there are large changes in

surface values within a short horizontal distance. Although the

dataset in this study is relatively sparse, it was anticipated that

the F varied gently across the study area. Examples of RBFs used

within this paper include completely regularised splines (CRS),

splines with tension (S&T), thin plate splines (TPS), multi-

quadratic (MQ) and inverse multiquadratic (InvMQ).

Kriging is a geostatistical technique that uses the statistical

properties of the data points to make predictions of values at

intervening points on the surface. This contrasts with IDW

and RBFs, which are deterministic techniques that create surfaces

based on either the extent of similarity of surrounding points

or the degree of smoothing respectively. Kriging uses the

semivariogram – a structural model of the data which links

position, direction, and the squared difference between values

of data points – to quantify spatial autocorrelation in the data.

It also takes into account the configuration of the data points

so that clustered points carry less weight individually than

isolated points at the same distance. The autocorrelation

values are then used within the interpolation to determine the

weights assigned to each measured value (Journel and
Huijbregts, 1978). A variety of kriging methods exist. Simple

Kriging uses a known constant mean. Ordinary Kriging

assumes a constant but unknown mean, whilst Universal

Kriging replaces the mean with some user-defined determi-

nistic function – usually a polynomial of order 1, 2, or 3. The

success of kriging-based techniques is principally due to the

use of a customised statistical distance rather than a

geometric (or euclidean) distance in its attempt to decluster

the available sample data (Isaaks and Srivastava, 1989, p.321).
3. Materials and methods

3.1. Meteorological data

The UK Meteorological Office provided meteorological data via

the British Atmospheric Data Centre (BADC),1 for the UK sites.

Met Éireann provided data for the three sites in Eire. Sites were

only included if they had daily observed global solar radiation

(MJ m�2 day�1) and sunshine duration (hours) data for a

minimum of 5 years. Years where >31 consecutive days of

data were missing were excluded, as were years where there

were >50 missing days in total. Daily values for the required

variables were available for 25 sites (Fig. 1), for varying lengths

of records between 1952 and 2000 (see Table 1). Errors,

duplicates and anomalies in the original data were identified

during the database (Oracle) loading process. Missing data

values were filled using a search and optimisation method

(Rivington et al., 2005). Post-processing checks for other

abnormalities in the data were also carried out, and one

years’ data from one site (Bracknell – 1999) was removed from

the dataset. Latitude and longitude for all sites were converted

to Ordnance Survey British National Grid co-ordinates and all

sites projected for analysis (Ordnance Survey, 2006).

3.2. Supporting data

For final presentation of the interpolation maps a generalised

300 m contour map of the UK was used to indicate the

elevation above which interpolation of F could not be

considered valid. The 300 m value was chosen since the

meteorological station with the highest elevation was 242 m

(average height of all stations = 75 m) which allowed for a

limited extrapolation from 242 to 300 m. The 300 m contour

was extracted (from the Ordnance Survey 10 m Digital

Elevation Data in GB and the LandMap 25 m DEM for Eire)2

and then buffered by 2 km, merged, and eroded by 2 km in

ArcInfo (see Harlow et al., 2005). This generalisation process

eliminated finger valleys and ensured a better representation

of the 300 m contour at the scale of the displayed map.

3.3. F Estimation and spatial interpolation

A previously published method (Rivington et al., 2005) for

estimating the F parameter was used to derive yearly values

per site. The method optimises daily values of F such that the

http://www.landmap.ac.uk/download/100k_grids_selector_v2.htm
http://www.landmap.ac.uk/download/100k_grids_selector_v2.htm
http://www.landmap.ac.uk/download/100k_grids_selector_v2.htm
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JW method accurately predicts the measured So values using

sunshine hours as the input. Yearly and long term average

values for F are then derived from the daily values. Daily So

(MJ m�2 day�1) values can then be estimated for every year for

which sunshine hours are available, using the JW model (see

Johnson et al., 1995 and Rivington et al., 2005 for details of the

implementation used here).

Seven different spatial interpolation techniques were

performed for the annual, long-term3 mean of the F parameter

for each station. These methods were chosen for this first

investigation of the spatial properties of the F parameter since

they are relatively simple to implement and do not depend on

the availability of secondary datasets to act as co-variates.
3 The number of records contributing to the mean value varied
between 11 and 48 (Table 1).
Minimising the computational complexity and data require-

ments are important if the JW method is to be more widely

used. The interpolations were undertaken using ESRI’s ArcGIS

Geostatistical Analyst (Johnston et al., 2001).

3.4. Exploratory data analysis

Exploratory data analysis of the LTA F data showed the dataset

to have a regional scale NW-SE downwards trend. The dataset

had a slight positive skew of 0.492 with a mean value of 0.81

and a median value of 0.80. The normal QQ plot, in which the

quantiles of a normal distribution and the distribution are

plotted relative to each other, was close to a straight line (see

Johnston et al., 2001, p88). All of these tests confirmed that the

dataset was near-normally distributed and did not require

transformation prior to interpolation.
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3.5. Parameterisation of the spatial interpolation methods

For all the methods referred to above, there are parameters or

design choices that require to be made. To ensure a fair

comparison of the spatial interpolation methods for the LTA F

dataset the parameterisation of each interpolation method

was investigated.

The IDW was carried out using both a circular (or isotropic)

and elliptical (or anisotropic) search neighbourhood for a

variety of neighbourhood sizes (4–24). For each case the power

parameter was optimised by cross-validation. By using an

anisotropic search neighbourhood rather than a circular

search neighbourhood, slight improvements in the error

measurements could be observed.

The optimal value for the smoothing parameter of the RBFs

was found by minimising the prediction errors using cross-

validation. For splines, both tension and smoothing para-

meters were again set to minimise the predictive error

estimated by cross-validation (Mitasova et al., 1995). The

spline routines were run with varying numbers of points (from

4 to 24 stepping by 2 points), with the smoothing parameter

optimised for each case. The larger the number of points

considered, the smoother the interpolated surface.

For kriging, a variety of semivariogram models exist with

which to model the behaviour of the experimental semivario-

gram cloud. Among the most commonly used of these are

spherical, exponential, and gaussian models. The spherical

model is frequently used in the interpolation of climatic

variables. While care is required in ensuring that the empirical

variogram behaviour near the origin is well represented by the

model fitted, it requires a ‘‘gross mis-specification of the vario-

gram model to have a dramatic impact on kriging estimates’’

(Chiles and Delfiner, 1999, p.175). As a result, the spherical

semivariogram model was selected for the interpolation of the

LTAFdataset.SimpleKrigingwasimmediatelydiscounted,since

the mean of the stationary random function was unknown. The

NW-SEtrend,identifiedintheexploratoryanalysisofthedataset,

had to be removed if the stationarity assumptions for Ordinary

Kriging (OK) were to be met. Options for trend removal included

1st, 2nd, or 3rd order polynomials, before kriging the residuals.

OK was implemented using the three orders of polynomial

trend removal, each combined with isotropic or anisotropic

search neighbourhoods. The size of the search neighbourhood

for each combination was varied from 4 to 24 points.

Surfaces were generated using each of the methods and

clipped to match the Great Britain (GB) and Eire coastline (from

Ordnance Survey and MIMAS, respectively). To create a

surface that covered all land areas of GB and Eire it was

necessary, given the layout of the meteorological stations, to

extrapolate (up to 10 km) in northern Shetland, the eastern-

most edge of East Anglia and west of Valentia in Eire. The

surfaces output by each interpolation method were compared

using the metrics defined in the next section (supplemented

for OK by the kriging standard error surface generated as part

of the interpolation process).

3.6. Interpolation accuracy assessment metrics

Due to the relatively small number of sites in this study, a cross-

validation strategy was used. Data points were consecutively
removed from the sample and the value at the removed point

interpolated using the remainder of the data. Recent research

has questioned the traditional practice of reporting RMSE as the

sole measure of interpolation accuracy (Willmott and Mat-

suura, 2006) Consequently, prediction errors were calculated

using a range of accuracy indicators and one measure of

effectiveness (the G-measure). RMSE is the square root of the

mean of thesquared residuals (predicted minus observed value)

and gives a high level indication of the overall accuracy of the

interpolated surface. Mean absolute error (MAE) is a measure of

the sum of the residuals. Small MAE values indicate a method

with few errors overall. Mean error (ME) is a measure of the bias

of the residuals. The MAE and ME were reported to give an

indication of the size of the errors and the overall bias

respectively. The G-measure gives an indication of how

effective a prediction is, relative to that using the sample mean

alone (Agterberg, 1984; Reich et al., 2004). A value of 100%

indicates a perfectfit whilea value of 0%describes no significant

improvement to using the sample mean alone. The G-measure

is calculated in the following manner:

G ¼ 1�
Pn

i¼1 ½zðxiÞ � ẑðxiÞ�2Pn
i¼1 ½zðxiÞ � z̄�2

( ) !
� 100

where ẑðxiÞ is the predicted value at point xi and z̄ is the sample

mean. These metrics can be used both during parameterisa-

tion of individual interpolation methods and in the between-

method comparisons.

3.7. Year-to-year variability testing

The year-to-year variability dataset provided a context for

assessing the magnitude of the cross-validation errors that

resulted from interpolating the LTA F parameter. Following

interpolation of the LTA F dataset, interpolations of Year-

specific F were attempted for each individual year between

1985 and 1995 to give a map view of how the F parameter

varied through time and space. The range of years selected

represented those years with the greatest number of available

stations in the network (see Table 1). However, due to the

already low density of station points, the increased variability

of the datasets caused instability in the semivariograms to

such an extent that it became impossible to use them for

spatial interpolation for some of the years. As a result, this

approach was discontinued.

3.8. Solar radiation predictions

So values were estimated using the site optimised LTA F

parameter values (FO), and the interpolated LTA F parameter

values (FI), for each site. This gave an indication of the level of

error in the calculation of solar radiation being introduced by

using interpolated FI values against the FO. Evaluations of

estimate quality were made using the fuzzy logic based

multiple-indices assessment system of Bellocchi et al. (2002)

as applied by Rivington et al. (2005) and Diodata and Bellocchi

(2007). This method permits a flexible structure in which a range

of indices and test statistics can be aggregated into modules

which are then aggregated into a single modular indicator Irad,

based on an expert weighting expression of the balance of
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importance of the individual indices and their aggregation into

modules, and modules into Irad. The indices used were: Relative

Root Mean Square Error (RRMSE), Modelling Efficiency (EF), the

probability of paired Student’s-t test (P(t)), forming the module

‘Accuracy’; the correlation coefficient of the estimates versus

measurements (R), forming the module ‘Correlation’; and two

Pattern Indices, one computed versus day of year (PIdoy), and

the other versus minimum temperature (PITmin), forming the

module ‘Patterns’. Further details on the Pattern Indices are

given in Donatelli et al. (2004).

Further to this, the difference between mean daily observed

So and that derived from the FO values and the FI values were

estimated. The difference between the daily So derived from the

FO values and the FI values were also estimated.
4. Results

4.1. Parameterisation of interpolation methods

Table 2 shows the cross-validation results of the parameter-

isation testing conducted for IDW RBFs, and OK for the LTA F

dataset. The statistics for the most successful parameterisa-

tion for each interpolation method are highlighted. Table 3

shows the effect of different combinations of trend removal

(1st, 2nd, and 3rd order polynomials) and isotropic and

anisotropic search neighbourhoods for OK.

4.2. Maps of LTA F

Fig. 2 shows the surfaces produced with each interpolation

method, using the best parameterisations found in testing.

The interpolated surfaces are presented as choropleth maps

with nine steps across the range of surface values. The kriging

standard error map associated with the OK surface is also

presented. Fig. 3 shows the surface generated with OK in more

detail and with the land areas above 300 m masked.

4.3. Variability in F parameter

Table 4 shows the year-to-year variation in the F parameter for

the 25 stations used in the interpolations together with the

interpolation errors for the optimal surface. The table shows

for the F parameter the mean (observed F), range, predicted F

via OK, the difference between the observed F and the

predicted value, standard deviation, coefficient of variation

(%) and the number of years of available data. The final column

expresses the value of the absolute difference (AD) as a

proportion of on-site F standard deviation. This gives an

indication of the level of cross-validation error when com-

pared to the variability of F at any given site.

Fig. 4 shows the year-to-year variation in the F parameter at

a number of representative sites together with the variation in

the mean annual for each year between 1952 and 2000.

4.4. Effect of interpolation errors on solar radiation
predictions

Fig. 5 shows the difference between mean daily So data derived

from FO and FI parameter values for the periods 1981–98 at
Denver (where the interpolated F parameter was under-

estimated), and 1967–76 at Aberdeen (where the interpolated F

parameter was over-estimated). The systematic error existing

in the JW model, as also observed by Rivington et al. (2005) can

be seen, where the model over-estimates in the winter and

under-estimates in the summer (most noticeable at Aberd-

een). The So data derived from FI shows very little difference

from those from FO (mean daily difference of �0.229 and

0.280 MJ m�2 day�1, see Fig. 5, and annual total difference of

�83.54 and 100.69 MJ m�2 day�1 at Denver and Aberdeen,

respectively). These under- and over-estimated annual totals

are comparable to the amount of So received over approxi-

mately 3–4 summer days. This indicates that the OK

interpolation method introduces only a very small addition

error to the estimation of So using the JW model.

The results for individual years of daily So data derived from

FO and FI parameter (1987 for Denver, and 1991 for Aberdeen)

again showclose similarity (mean daily difference of�0.242 and

0.278 MJ m�2 day�1, and an annual total difference of �88.15

and 101.39 MJ m�2 day�1 at Denver and Aberdeen, respectively).

Again, these can be translated into an annual total under- and

over-estimation error equivalent to about 3–4 days of summer

So. The JW model produces some large errors, i.e. at Aberdeen

(the largest being an under-estimation of 15 MJ m�2 day�1).

These large errors are possibly due to the sea-fog (Haar) effect

commonly found there, which would distort the role of the F

parameter. Whilst these are errors of an occasionally large

magnitude, they exist consistently throughout the year as over-

and under-estimations (Fig. 5), hence the impact of the data on

end use, i.e. within a crop model will be reduced due to the

compensating error effect.

Table 5 shows the results of testing the So data derived from

FO and FI parameters using the Irad multiple-metrics evalua-

tion method. Here metrics are assigned weightings and

aggregated into modules, which are also assigned weightings.

A further level of aggregation of the modules produces the

single indicator Irad (0 = good estimate quality, 1 = poor

estimate quality). The mean for each metric value across all

sites show very little change. Generally the FI values are very

slightly higher, except for the pattern indices (PIdoy and

PITmin), which are marginally lower. The mean Irad values

across all sites shows that the So data derived from FO and FI

parameters are very similar (FI Irad = 0.147, FO Irad = 0.166).

The individual metrics used to determine Irad per site show

very little change between So data derived from the FO and FI

parameter. The FI So data occasionally show an improvement,

both in individual metrics and Irad, over the FO So data. These

improvements in Irad values can be attributed to the lower

values for individual metrics, primarily the pattern indices

(PIdoy and PITmin), and the weightings assigned to them and

their respective modules. For example at Aberporth there is an

improvement in the pattern indices from using FI, leading to

the Irad value decreasing from 0.246 for the FO derived So data,

to 0.073. Other sites where a similar change in pattern indices

and Irad occur are all west coast locations (i.e. Aldergrove,

Belmullet, Dunstaffnage), which generally have greater

amounts of cloud cover. Weightings for the pattern indices

and the Pattern module favour reduction in Irad. These

changes in Irad have to be put into context of the overall

multiple-metric assessment approach, as the magnitude of



Table 2 – Cross-validation results with anisotropic search neighbourhoods (OK includes 1st order polynomial trend removal)

Interpolation
method

Accuracy or
effectiveness measure

Neighbourhood

4 6 8 10 12 14 16 18 20 22 24

IDW RMSE 0.0565 0.0559 0.0564 0.0547 0.0558 0.0567 0.0562 0.0568 0.0572 0.0572 0.0573

MAE 0.0468 0.0457 0.0435 0.0423 0.0441 0.0446 0.0442 0.0446 0.0448 0.0449 0.0449

ME �0.0084 �0.0113 �0.0129 �0.0109 �0.0105 �0.0116 �0.0117 �0.0126 �0.0127 �0.0127 �0.0127

G-Measure 46.9 47.9 47.1 50.1 48.1 46.6 47.4 46.2 45.6 45.5 45.4

CRS RMSE 0.0582 0.0579 0.0580 0.0566 0.0581 0.0588 0.0585 0.0589 0.0580 0.0582 0.0583

MAE 0.0465 0.0460 0.0439 0.0431 0.0449 0.0451 0.0446 0.0448 0.0445 0.0446 0.0448

ME �0.0076 �0.0096 �0.0092 �0.0074 �0.0057 �0.0056 �0.0055 �0.0057 �0.0043 �0.0035 �0.0026

G-Measure 43.6 44.3 44.0 46.6 43.9 42.5 43.1 42.3 43.9 43.6 43.3

S&T RMSE 0.0577 0.0573 0.0576 0.0561 0.0578 0.0587 0.0584 0.0589 0.0582 0.0583 0.0584

MAE 0.0464 0.0456 0.0437 0.0427 0.0448 0.0450 0.0443 0.0444 0.0444 0.0445 0.0448

ME �0.0077 �0.0100 �0.0098 �0.0077 �0.0058 �0.0058 �0.0056 �0.0059 �0.0044 �0.0035 �0.0025

G-Measure 44.5 45.3 44.7 47.7 44.4 42.7 43.3 42.2 43.7 43.4 43.2

TPS RMSE 0.1438 0.0987 0.1011 0.0906 0.0982 0.0956 0.0949 0.0946 0.0946 0.0891 0.0881

MAE 0.1015 0.0755 0.0788 0.0730 0.0776 0.0752 0.0735 0.0737 0.0728 0.0702 0.0699

ME �0.0002 0.0089 0.0079 0.0029 �0.0034 �0.0019 �0.0029 �0.0019 �0.0019 0.0002 0.0006

G-Measure �244.4 �62.3 �70.2 �36.5 �60.5 �52.0 �49.8 �49.0 �49.0 �32.1 �29.2

MQ RMSE 0.0657 0.0638 0.0635 0.0633 0.0642 0.0631 0.0635 0.0631 0.0619 0.0619 0.0620

MAE 0.0538 0.0526 0.0530 0.0524 0.0532 0.0527 0.0532 0.0530 0.0479 0.0524 0.0524

ME �0.0057 �0.0034 �0.0015 �0.0019 �0.0027 �0.0018 �0.0027 �0.0023 �0.0016 �0.0013 �0.0014

G-Measure 28.0 32.2 32.9 33.4 31.4 33.6 32.9 33.6 36.2 36.2 36.0

InvMQ RMSE 0.0558 0.0556 0.0568 0.0543 0.0580 0.0602 0.0601 0.0613 0.0613 0.0619 0.0624

MAE 0.0463 0.0460 0.0436 0.0416 0.0451 0.0456 0.0447 0.0456 0.0463 0.0465 0.0472

ME �0.0081 �0.0123 �0.0139 �0.0095 �0.0068 �0.0075 �0.0074 �0.0078 �0.0059 �0.0048 �0.0034

G-Measure 48.2 48.5 46.4 51.0 44.0 39.7 39.9 37.5 37.4 36.2 35.3

OK RMSE 0.0536 0.0525 0.0504 0.0502 0.0497 0.0477 0.0493 0.0495 0.0484 0.0487 0.0488

MAE 0.0444 0.0424 0.0418 0.0407 0.0409 0.0405 0.0404 0.0408 0.0395 0.0402 0.0400

ME �0.0079 �0.0048 �0.0039 �0.0020 �0.0012 �0.0022 �0.0012 �0.0007 �0.0005 �0.0011 �0.0010

G-Measure 52.2 54.1 57.8 58.1 58.8 58.9 59.5 59.2 61.0 60.5 60.3
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Table 3 – Effects of trend removal and search shape for ordinary kriging of JW-F

1st order trend removal 2nd order trend removal 3rd order trend removal

Isotropic Anisotropic Isotropic Anisotropic Isotropic Anisotropic

Optimal neighbourhood 20 18 20 6 20 6

RMSE 0.0484 0.0490 0.0587 0.0579 0.1108 0.1106

MAE 0.0395 0.0401 0.0472 0.0475 0.0751 0.0766

ME S0.0005 0.0007 �0.0014 �0.0005 0.0038 0.0033

G-measure (%) 61.0 60.0 42.7 44.1 �104.3 �103.7

a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 4 6 6 – 4 8 0474
the change is relative to the overall range (0–1), where any Irad

value below approximately 0.3 indicates good estimate

quality. The calculation of Irad follows an ‘S’ shaped curve

(0–1), whereby a change from 0.246 to 0.073 occurs at the near
Fig. 2 – Comparison of the spatial interpolat
asymptotic phase, and hence does not reflect a substantial

improvement in estimate. These results also indicate the

possible limitation of the original optimisation method used to

produce the FO value, which aimed to minimise the difference
ions of long term average (LTA) F value.



Fig. 3 – Interpolation of long term average – F values masked by 300 m contour.
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in daily means between observed and estimated So data,

rather than more detailed aspects such as patterns.
5. Discussion

5.1. Interpolation methods

The testing of alternative spatial interpolation methods was

useful as it confirmed the need for care when selecting

interpolation methods and in their parameterisation. The most

successful of the methods tested for the F parameter was OK

with a G-measure of 61.0%, compared with the two next best

methods InvMQ (G = 50.9%) and IDW (G = 50.1%), (see Table 4).
IndeedinspectingTable2 showsthat OKremainsmoreaccurate

than the deterministic methods even with small numbers of

points in the search neighbourhood. Visually all interpolations

capture the broad NW-SE trend in the F parameter. Ordinary

kriging can be seen to achieve a higher level of detail in the

interpolated surface than is achieved by the IDW and InvMQ

while not suffering from the artefacts, indicated by negative G-

measure values, of TPS or MQ (see Fig. 2).

While it is possible to conclude that F parameter may be

interpolated, the magnitudes of the errors associated with the

process are significant. Overall measures of accuracy such as

RMSE tend to mask areas where the interpolation is less

robust. The largest errors (highlighted in Table 4) in the cross-

validation are often associated with sites at the edges of



Table 4 – Year-to-year variability of JW-F compared with interpolation errors for optimal surface (OK)

Station Observed
F

Range
(max–
min)

Predicted
F

Difference
(Observed F �

predicted F)

Standard
deviation

Coefficient of
variation (%)

N
(years)

AD/
standard
deviation

Aberdeen 0.737 0.278 0.821 0.084 0.083 11.21 10 1.01

Aberporth 0.884 0.292 0.824 �0.060 0.068 7.68 39 0.88

Aldergrove 0.839 0.220 0.870 0.031 0.048 5.67 30 0.65

Auchincruive 0.850 0.237 0.840 �0.010 0.064 7.51 24 0.16

Aviemore 0.890 0.138 0.833 �0.057 0.040 4.47 16 1.43

Belmullet 0.909 0.316 0.947 0.038 0.086 9.52 11 0.44

Bracknell 0.723 0.209 0.724 0.001 0.047 6.43 28 0.02

Brooms Barn 0.754 0.188 0.736 �0.018 0.055 7.25 19 0.33

Cawood 0.797 0.332 0.771 �0.026 0.075 9.47 29 0.34

Denver 0.806 0.167 0.738 �0.068 0.041 5.14 18 1.64

Dunstaffnage 0.846 0.377 0.866 0.020 0.097 11.41 13 0.21

East Malling 0.688 0.281 0.725 0.037 0.066 9.62 34 0.56

Eskdalemuir 0.760 0.183 0.818 0.058 0.051 6.77 25 1.13

Everton 0.786 0.344 0.759 �0.027 0.077 9.84 29 0.35

Hazelrigg 0.802 0.063 0.803 0.001 0.029 3.57 6 0.03

Hemsby 0.760 0.167 0.706 �0.054 0.044 5.76 18 1.23

Jersey 0.752 0.243 0.768 0.016 0.057 7.51 30 0.28

Lerwick 0.850 0.202 0.794 �0.056 0.043 5.09 48 1.29

Malin Head 0.992 0.191 0.879 �0.113 0.046 4.63 11 2.46

Mylnefield 0.817 0.301 0.823 0.006 0.070 8.61 25 0.09

Rothamsted 0.689 0.347 0.738 0.049 0.086 12.51 31 0.57

Stornoway 0.833 0.133 0.896 0.063 0.034 4.11 18 1.84

Sutton Bonington 0.713 0.347 0.782 0.069 0.073 10.21 30 0.95

Valentia 0.947 0.159 0.936 �0.011 0.045 4.72 11 0.25

Wallingford 0.727 0.359 0.742 0.015 0.087 12.03 28 0.17

Overall mean 0.806 0.243 0.806 0.000 0.060 7.63 23.2 0.73

Standard deviation 0.079 0.085 0.067 0.049 0.019 2.68 10.2 0.64

a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 4 6 6 – 4 8 0476
geographic and altitudinal space, for example Aberdeen (N&E),

Aviemore and Eskdalemuir (altitude), Hemsby (E), Lerwick (N)

and Stornoway (N&W). This points to the strictly limited

ability of the methods to extrapolate. Another error of note is

that for Malin Head where cloud cover is significantly greater

than for other sites in the immediate vicinity, due both to its
Fig. 4 – Year to year variability
greater than average distance from other sites and its exposed

situation on the west coast. The mean value of the absolute

errors in prediction expressed in standard deviations is 0.73,

(Table 4). The closer this value is to zero, the better the

predicted value of F corresponds with the observed value of F,

so the errors introduced by spatial interpolation using even
in JW-F for selected sites.



Fig. 5 – Difference in mean daily (top left four plots) and daily (bottom left four plots) solar radiation (FO derived So – observed

So and FI derived So – observed So). The right hand plots show the daily mean and annual total differences (FO derived So – FI

derived So) (MJ mS2 dayS1).
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the best of the tested methods are significant. Comparing the

difference values with the range of annual values in Table 4, it

is, however, clear that the errors introduced by spatial

interpolation are much smaller than those that might be

introduced by using a year specific value for F rather than a

long term average value.

A significant limitation of the analysis is the sparse network

of observation stations for which data were available. It is not

possible to say whether data from 25 points is enough to capture

the spatial variability of F across the British Isles. The prediction

standard error map for the OK generated surface (Fig. 3) is an

indication (for geographic space) of the spatial pattern of

uncertainty (but does not provide a map of uncertainty

associated with changes in elevation which may be a significant

factor). It shows that other than for areas very close to actual

observed values (i.e. the observation stations), and other than

the south-east of England where the concentration of observa-

tion stations is most dense, the prediction errors are uniform

across much of the study area. Only by substantially increasing

the network of observation stations would this problem be

overcome (and this is of course impossible for historical cases).

5.2. Solar radiation estimation

The effect of the spatial interpolation errors in the F parameter

on So calculation are not substantial. Whilst the JW model,
using a site-optimised F (derived from observed So), makes

some large over- and under-estimates (i.e. at Aberdeen, 1991,

Fig. 5), the additional error introduced by the interpolation is

very small. The total difference, as illustrated in Fig. 5, equates

to an error of approximately 3–4 days of summer So within a

year. In relation to the end use of the FI derived So, the mean

daily difference would have a negligible impact if used in a

crop model. Whilst differences in crop model estimates will

exist when using observed So and FO derived So, due to

limitations of the JW So method (or any other model),

additional errors resulting from using FI derived So will be

small. For example, for a light to biomass conversion value of 3

(g of biomass per MJ m�2 day�1 So) over a 21 day period (day

170–190) at Denver, where the observed mean So is

18.56 MJ m�2 day�1 (1981–98) would produce 55.7 g of biomass

per day and 1169.3 g over the 21 days. Using the mean daily

error from Denver (�0.242 MJ m�2 day�1 in 1987) from using

the FI gives a daily mean So of 18.32 MJ m�2, which would

produce 54.6 g of biomass per day (1.1 g less) and 1146.6 over

the 21 days (22.7 g less). Using actual, as opposed to 21 day

mean values of So (with day to day variability) would produce

similarly small differences, due to the compensating error

effect of over- and under-estimates of So. These errors would

be less for other times in the year, as the period of day 170–190

exemplifies the time of year when the JW model makes its

largest over- and under-estimates (i.e. Fig. 5). Hence the overall



Table 5 – Individual metrics and derived Irad results for the site optimised F (FO) and interpolated F (FI)

Location N (years) Mean index values

RRMSE Paired t-test EF Correlation PIdoy PITmin Mean Irad values

FO FI FO FI FO FI FO FI FO FI FO FI FO FI

Aberdeen 9 26.84 29.37 0.205 0.287 0.899 0.876 0.956 0.941 0.894 0.919 0.719 0.693 0.080 0.080

Aberporth 36 27.86 23.52 0.271 0.338 0.865 0.898 0.936 0.951 1.802 1.345 1.485 1.126 0.246 0.073

Aldergrove 25 26.67 25.56 0.227 0.342 0.745 0.895 0.904 0.951 2.049 1.157 1.519 1.086 0.201 0.060

Auchincruive 19 28.73 28.10 0.143 0.185 0.876 0.882 0.941 0.943 1.667 1.583 1.520 1.471 0.266 0.257

Aviemore 8 26.54 24.44 0.021 0.336 0.898 0.909 0.951 0.955 1.614 1.172 0.751 0.815 0.063 0.196

Belmullet 10 27.56 28.04 0.073 0.052 0.876 0.869 0.940 0.937 2.035 2.043 1.624 1.672 0.288 0.196

Bracknell 28 23.89 23.95 0.224 0.131 0.898 0.897 0.961 0.961 0.802 0.841 1.097 1.149 0.044 0.032

Brooms Barn 16 24.47 23.88 0.190 0.167 0.891 0.896 0.958 0.959 1.150 1.061 1.053 0.935 0.109 0.049

Cawood 29 26.92 27.12 0.164 0.297 0.879 0.878 0.946 0.946 1.140 1.069 1.011 0.984 0.172 0.138

Denver 18 23.42 23.92 0.340 0.180 0.899 0.895 0.956 0.954 0.958 0.997 0.701 0.710 0.034 0.017

Dunstaffnage 13 28.06 29.68 0.122 0.168 0.899 0.884 0.951 0.943 1.571 1.472 1.098 1.126 0.207 0.113

East Malling 34 25.02 24.88 0.187 0.162 0.890 0.891 0.960 0.960 0.908 0.899 0.992 1.005 0.086 0.096

Eskdalemuir 25 27.02 26.61 0.231 0.306 0.901 0.903 0.953 0.954 1.076 0.976 0.979 1.011 0.086 0.082

Everton 29 26.73 26.69 0.166 0.202 0.862 0.862 0.948 0.948 1.154 1.144 1.184 1.173 0.147 0.098

Hazelrigg 6 25.34 29.81 0.240 0.227 0.905 0.867 0.957 0.936 0.986 1.298 1.233 1.097 0.171 0.176

Lerwick 41 28.04 28.95 0.131 0.010 0.909 0.902 0.956 0.953 1.763 1.860 1.144 1.222 0.222 0.301

Malin Head 10 24.09 25.81 0.011 0.020 0.914 0.901 0.958 0.955 1.939 2.129 1.433 1.633 0.246 0.287

Mylnefield 23 28.33 27.55 0.193 0.183 0.887 0.883 0.946 0.948 1.325 1.325 0.916 0.967 0.140 0.139

Rothamsted 30 26.96 26.66 0.148 0.134 0.873 0.876 0.954 0.955 0.885 0.880 1.100 1.090 0.135 0.150

Stornoway 15 25.29 25.01 0.075 0.304 0.916 0.917 0.959 0.959 1.535 1.249 1.044 0.857 0.131 0.051

Sutton Bonington 26 35.27 34.37 0.394 0.157 0.766 0.780 0.893 0.899 1.127 1.075 1.147 1.036 0.228 0.255

Valentia 10 25.77 25.43 0.207 0.219 0.894 0.895 0.947 0.948 2.258 2.270 1.599 1.645 0.278 0.285

Wallingford 26 24.87 24.74 0.124 0.174 0.891 0.892 0.953 0.953 1.123 1.122 0.887 0.874 0.240 0.240

Mean 26.68 26.70 0.178 0.199 0.880 0.885 0.947 0.948 1.381 1.299 1.141 1.103 0.166 0.147
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impact of using FI is not only small, but can also be quantified

in relation to the end use of the FI derived So.

The small differences between FO and FI derived So

demonstrates that a moderate degree of variability in the F

parameter has no appreciably detrimental effect on calcula-

tion of So estimates. This further demonstrates the robustness

of the JW model and confirms that interpolation of the F

parameter is a viable option when observed So is not available

for model calibration.

However, the results gained from use of FI compared with

those from FO indicate that the JW model’s performance was

improved in some cases. Rivington et al. (2005) showed that the

JW model has a systematic bias, where the model over-

estimates in the winter and under-estimates in the summer.

The F parameter controls the relative contribution of diffuse

radiation on cloudy days, and is thought to determine the

seasonal over- and under-estimation errors. The reduced Irad

values seen in the FI derived So data at some locations may be

due to an unintended reduction in this systematic bias seen in

the FO derived So estimates. Using the FO value appears to

provide an introduced compensating error that partially

reduces the systematic error at some locations. Again, the

magnitudeoftheseerrors isstill relativelysmall.However,what

these results show is that care is needed to determine how the

interpolation of a model parameter influences model estimates.

In this case the interpolation of F resulted in an improvement in

model performance at some locations, but a slight deterioration

at others. The important point is that, however parameter

values are derived (spatial interpolation as here, statistical or

empirical methods, etc.), model outputs should be assessed to

determine how the derivation method introduces uncertainty

and how the errors manifest themselves.
6. Conclusion

The aim of this paper was to conduct an initial investigation

into how well the F parameter could be spatially interpolated

with the intention of using the interpolated values as a basis

for calibrating the JW model at sites without on-site solar

radiation measurements. The ordinary kriging approach

produced the best method for the spatial interpolation of

the F parameter. It is concluded that the spatial interpolation

of the F parameter is feasible and does not introduce

unacceptable errors (at least in UK and Eire and regions with

similar densities of meteorological station networks). There

are very small differences between solar radiation data

estimated using an on-site long term average F and those

derived from the interpolated F. Therefore, in this example,

the interpolation process does not introduce a significant

error. Indeed, due to the systematic error known to exist with

the JW model, the interpolated F in some cases results in

compensating errors within the estimation of solar radiation,

unintentionally improving the JW model performance. The

research has also shown that the JW model is robust and has

relatively low sensitivity to variations in the F parameter. Thus

the application of the JW method at sites without on-site solar

radiation measurements is possible.

The spatial interpolation techniques used were deliber-

ately chosen for their simplicity So as not to introduce
additional data or parameterisation requirements. They thus

rely entirely on the spatial structures within the datasets.

Since the definition of F relates to sunshine duration, it may

thus be possible to use co-variates in the spatial interpolation

of the F value. Examples would include altitude (relatively

widely available from DEMs), distance to the sea (definable

within a GIS from coastline data) and most significantly cloud

type and cover. A relationship between F and rainfall would be

particularly useful since rainfall is measured at a much greater

number of sites across the UK However, there can be a wide

range in correlations between amount of rain and amount of

sunshine.

Fundamentally, this research demonstrates that careful

selection, and use, of appropriate interpolation techniques

allows the application of robust models, with basic para-

meterisation requirements, to locations where parameterisa-

tion using observed data is not possible.
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