

Centre for Water Law, Policy and Science

Flood Management in Scotland

Tom Ball

Associate Fellow: UNESCO centre for Water Law, Policy and Science, University of Dundee

Structure

- The flooding problem
- Politico-legal 'solutions'
- Land management as sustainable flood management: examples
- An agenda for the future

The Perth to Inverness Railway at Dalguise, River Tay in flood January 2005 The scale of the problem

- ~ 200 000 homes at risk of coastal/ fluvial flood in Scotland
- Average insurance claim for a one metre depth summer flood: £22,000 for buildings and £13,000 for contents (many much higher)

In Scotland...

- River flow peaks are measurably higher compared to 30 years ago, especially in the West (Werritty et al. 2002)
- 8 of 16 largest rivers had maximum recorded flood in 8 years prior to 2002
- Many large flood events since 2000 (Edinburgh, Glasgow, Elgin)
- No conclusive proof of a link to climate change, but in line with model predictions

Seasonal Precipitation changes 1961-2006

UK Climate Impacts Programme 2008

Water flows in major Scottish Rivers

River	Drainage area (km²)	Record begins	Maximum flood to 1988 (m ³ s ⁻¹) + date			
Тау	4587	1948	1890	2/1950	2268	1/1993
Tweed	4390	1962	1556	1/1982		
Spey	2861	1952	1594	8/1970		
Ness	1839	1 930 /73	594	?/1937	669	2/1989
Clyde	1704	1958	670	9/1985	830	12/1994
Dee	1370	1934	1134	1/1937		
Don	1273	1969	286	8/1970	313	9/1995
Deveron	954	1960	521	5/1968		
Annan	925	1967	473	10/1977		
Nith	799	1957	986	1/1962		
Leven	784	1963	151	1/1974	197	3/1990
Findhorn	782	1958	2410	8/1970		
Earn	591	1951	305	2/1948	358	1/1993
Helmsdale	551	1975	273	12/1985	287	10/1993
Teith	518	1963	247	1/1975	374	1/1992
Whiteadder	503	1969	280	11/1984		

Table shows data for gauging stations at outfall of all Scottish catchments with area >500km² and continuous peaks-over-threshold records 1975-1997

GOOD NEWS!

FOLLOWED BY BAD NEWS!

Flood Risk Management (Scotland) Act 2009

SECTION 20 SEPA to assess possible contribution of alteration etc. of natural features

(1) SEPA must, by 22nd December 2013 or such other date as the Scottish Ministers may direct, assess whether alteration (including enhancement) or restoration of natural features and characteristics of any river basin or coastal area in a flood risk management district could contribute to the management of flood risk for the district.

– more priority to land management?

A link between rural land use change and flooding?

Pre-war (1930s and before)

Recent

O'Connell E et al. (2007) Hydrol Earth Syst Sci 11:96-107

O'Connell et al 2006 - conclusions

- Substantial evidence in the UK of increased surface runoff generation resulting from modern land use practices (and that they can be mitigated or avoided by a range of surface runoff control measures)
- "what hydrologists want is to be able to tell flood risk pratitioners that their predictions use a method that has been tested and found to be reliable"
- → need to validate rainfall-runoff models scaling DOWN to process UP to catchment
 - Aggregation and propagation
 - Exchange with groundwater
 - Flow through confluences

Upland management

Plantation forests

22

Gully woodlands

Large woody debris

Forestry

Hall GH and and Cratchley R (2005) 45th Congress of the European Regional Science Association, Amsterdam, August 2005

Possible flood reduction strategies for upland catchments (Hall and Cratchley, 2005)

- Continuous cover forestry practices should be employed, to avoid soil erosion from clear felled hillslopes. Trees need to grow beyond normal commercial maturity to ensure the open canopy conditions favourable for high productivity of ground vegetation.
- Riparian zones in the steep upland valleys should be planted with oak/birch to help ithe stabilisation of the thick deposits of glacial and periglacial sands, gravels and clays forming the river banks.

Operationalising Sustainable Flood Management: Hawick

Craik forest, Scottish Borders

Existing river path with new plantings

Old path of river marked out by infilling cut-off meanders, ponds and riparian trees

Sale of the local sectors in t

And No design and on the start of the

Aichael Bonel

inter Extern 1 19 1

一下市会化。公

intensity prior to each visit (mm hr-1)

Our 'agenda' for Flood Management Research

- Refine risk assessments through stakeholderdriven targeted hydrology
- Improve knowledge of constraints on delivery of measures, e.g. due to planning and policy
- Develop understanding and quantification of socioeconomic and environmental (multiple) benefits
- Disseminate/ interact with the key players including, most importantly
 - communities at risk
 - those who can make a difference -including landowners

