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• Shifts in the food web structure are influenced by bed mobility.

• Channel evolution is driven by sediment supply and large flows.

• Changes in sediment storage lead to hydraulic adjustments   
and shifts in the available habitat self-maintained condition. 

• Results indicate the sediment supply, storage and mobility have 
ecological relevance across multiple spatial scales and life-stages 
of Chinook salmon.  

Findings highlight the necessity of evaluating the sediment   
supply and in-channel gravel budget when establishing process-
based reference conditions and their relation to biota.
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Objective

o Quantify physical-ecological interactions that evolve from a 
recently restored meandering gravel-bed river.

Research Questions

1) How do spatial patterns in bed mobility influence the number of 
invertebrates and the species composition in the restored reach 
relative to a reference reach?

2) How do the simple initial conditions evolve towards complexity 
and dynamism characteristic of alluvial rivers?

3) What is the role of sediment supply in promoting morphologic 
change?

4) To what extent do evolving physical processes influence habitat 
availability?

Approach

• Utilize recently restored reach of the Merced River, CA as a 
field-scale laboratory:
• Experimental manipulation of physical variables (e.g. substrate).

• High-resolution measurements and computations from known initial 
condition. 

• Quantify rates of morphologic evolution and habitat availability.

• Test models that can be used to generalize findings to other rivers.

Figure 1.  Study reaches on the Merced River, CA. 
Studies were conducted in an upstream reference reach 
(bottom left) and the 2.5 km restored Robinson reach 
(bottom right).

4. Morphologic Evolution

Quantifying the role of sediment supply on channel evolution, habitat 
availability and food web dynamics
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5. Sediment Budget
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Figure 2.  Bed mobility-invertebrate relations between restored and 
reference reaches: A) Invertebrate abundance; B) Grain-size 
distribution; C) Shields stress (restored); D) Shields stress (reference); 
E) Experimental disturbance results and F) Proportional abundance.  
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Figure 3.  Morphologic response to variable discharge.  The upper 
panel shows the flood hydrograph of the Merced River, CA (2002-
2008).  The lower panels illustrate the change in bed elevation between 
successive surveys (left) and cross-sectional changes in erosion and 
deposition over time (right).    

Figure 4.  In-channel gravel budget of the Robinson Reach illustrating 
A) the net sediment flux calculated within 30mx30m budget cells and B) 
the magnitude of sediment flux terms calculated per morphologic unit.  

Figure 5.  Bar storage versus migration distance of the outer bank for 
the upper restored reach (left) between successive floods.  On the right, 
the relation between bar storage and bank migration distance is 
compared between the upper and lower restored reaches (2002-2008)  

Figure 6.  Modeled bed shear stress changes over time at Q = 42.5 
cms (90% of bankfull discharge).  

Figure 7.  Computed bed elevation change between 2002-2003 using 
the Wilcock and Kenworthy (2002) two-fraction transport function.  The 
upper panel shows the input hydrograph.  Comparison between 
observed and computed bed evolution is shown in the lower right.

Figure 8.  Modeled changes in depth, velocity and Chinook salmon 
spawning and rearing habitat (discharge = 6.4cms).  HSI values were 
calculated based on suitability curves developed by Gard (2006).    
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