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Abstract

The paper describes experiments with FEARLUS, an agent-based model of land use
change. The agents are satisficing (rather than optimising) decision-makers. The paper
focuses on the effects of varying agents’ aspiration threshold: the economic return an agent
requires from a parcel of land to persist with the current land use. If the threshold is not
reached, the agent chooses a land use at random to apply to that parcel in the next year.
It is shown that the optimum level for the aspiration threshold is affected by environmental
heterogeneity, and the level of return required to break even.

1 Introduction

This paper reports experiments with FEARLUS (Framework for Evaluation and Assessment of Re-
gional Land Use Scenarios), an agent-based social simulation (ABSS) model (Conte, Hegselmann
and Terna 1997) of land use change. The paper focuses on the comparative success of variants of
an approach to land use selection which differ only in the economic return or Yield from a Land
Parcel which will satisfy the Land Manager. (Terms referring to elements of FEARLUS models
begin with an upper-case letter, and are italicised when first used.) We refer to the required level
of Yield as the Manager’s Aspiration Threshold. If the Aspiration Threshold is achieved, the Land
Manager retains the same Land Use for that Land Parcel in the following Year.

The concept of aspiration thresholds goes back within economic psychology at least to Simon
(1955), who uses the term ‘aspiration level’ for the minimum price a seller will accept for an
item. The concept is linked to that of ‘satisficing’, introduced in Simon (1957) as an alternative
to ‘optimising’, to indicate that agents frequently continue seeking a solution to a problem only
until they find one that is ‘good enough’, rather than persisting in the hope of finding an optimum
solution. This makes sense because the search for a solution is itself, in general, costly, and
switching solutions may also involve costs. Moreover, it may not be known whether the new
solution will indeed turn out better than the old. All these factors may apply to a real-world
land manager’s problem of land use selection; current FEARLUS models only deal with the last,
which can arise in the real world because of gaps in land managers’ knowledge of land uses’ yield
under various conditions, and the inherent unpredictability of climatic and economic conditions.
Simon’s concept is little used by those researching agricultural innovation. For example, a recently
developed conceptual framework (Abadi Ghadim and Pannell 1999) does not mention it, although
noting that farmers are in general somewhat ‘risk averse’ (given two courses of action with the
same ezpected return, they prefer the one which reduces uncertainty).

The use of ABSS models to study land use is showing rapid growth (Berger, Park, Vescovi, Vlek
and van de Giesen 2001, Parker, Manson, Janssen, Hoffman and Deadman 2001). Our approach
to ABSS is to work initially with quite simple models, exploring their dynamics in some detail
before adding additional complexity and realism. Simple models permit multiple simulation runs
with each of a range of parameter settings, and hence use of statistical techniques to compare the
model’s performance under different parameter settings. Thus we can often show that the model
usually behaves in a specific way, rather than merely that it can do so.

Early experiments with FEARLUS are described in Polhill, Gotts and Law (2001). The FEAR-
LUS models discussed both there and here consist of a set of Land Managers (representing house-



holds, not individuals), and their Environment, which includes a grid of square Land Parcels, and
a set of possible Land Uses. Every Year, Land Managers use their Selection Algorithm to choose
a Land Use for each Land Parcel they own. The experiments described concern the competitive
performance of Land Managers using different Land Use Selection Algorithms in a range of En-
vironments differing in their spatio-temporal heterogeneity. We showed in Polhill et al. (2001)
that the performance of specific Selection Algorithms varies with the environmental context, and
with the Algorithms followed by other agents. Here, we vary the model Environments used more
extensively and systematically than in our earlier work, and focus on a different and narrower
range of Selection Algorithms.

Some Selection Algorithms studied in Polhill et al. (2001) involved imitation of neighbours’
choices — a form of adaptation to environmental feedback. While extending our work on imitative
Selection Algorithms, we discovered a family of non-imitative Selection Algorithms that use a
simpler form of adaptation. This highlighted the strategic significance of the Land Manager’s
Aspiration Threshold (or ‘high yield threshold’), a feature possessed by some of our imitative
Selection Algorithms, but not given close attention in Polhill et al. (2001).

A Land Manager using any Selection Algorithm that involves an Aspiration Threshold looks
at the Yield that a Land Parcel produced in the preceding Year. If this Yield equalled or exceeded
the Aspiration Threshold, the Land Manager sticks with the same Land Use for that Land Parcel.
Otherwise, some other procedure is used to select the Land Use. In the Habit/Random Algorithm
(‘HR?) family, which is the focus of this paper, this is simply Random Experimentation — a random
choice between the possible Land Uses, all having equal likelihood of being selected. Members of
the HR family differ only in the level of their Aspiration Threshold. They can be differentiated
by inserting their Aspiration Threshold into their name: thus H8R is HR with an Aspiration
Threshold of 8, H10R is HR with an Aspiration Threshold of 10.

2 Method

The parameters of a FEARLUS model specify the size and shape of the grid of Land Parcels,
and the length (e) of the bitstring encoding the External Conditions (which vary from Year to
Year but apply across the whole grid). Each Land Parcel has a set of Biophysical Characteristics,
fixed for the duration of a simulation run. These again are encoded as bitstrings; the length of
these bitstrings, p, is another model parameter. Randomly generated bitstrings of length p + e
represent possible Land Uses (always eight of them in the simulations reported here). Two further
Environment parameters are constant over over space and time: a Break Even Threshold (BET),
specifying the Yield required from a Land Parcel to break even, and the Land Parcel Price (LPP).

After an initial Year Zero, in which Land Parcels are assigned to Land Managers, and there is
a random setting of External Conditions and allocation of Land Uses to Land Parcels, the annual
cycle is as follows:

1. Land Managers select the Land Use of each Land Parcel they own.

2. The bitstring encoding External Conditions is calculated by flipping each bit in the current
bitstring with a Flip Probability specified as a model parameter.

3. Yield is calculated for each Land Parcel by matching the bitstring representing its current
Land Use against a concatenation of those for its Biophysical Characteristics, and the Ex-
ternal Conditions: the Yield is the number of matching bits. The Account of each Land
Manager, which starts at zero, is updated for each Land Parcel owned by subtracting the
BET from its Yield, and adding the result to the Account.

4. Land Managers with Accounts below zero sell their worst-performing Land Parcels one by
one (at the LPP) until reaching or exceeding zero. Any obliged to sell all their Land Parcels
leave the simulation. Land Parcels for sale are sold in random order. A buyer is chosen
stochastically from a list made up of those who owned at least one of the Parcel’s eight
orthogonal or diagonal Grid Neighbours during the preceding Year, and have at least the



LPP in their Account (each Grid Neighbour owned gives its owner one chance to win), plus
one potential new Land Manager (given a single chance to win).

The experiments reported here use a 7 x 7 array of Land Parcels, given a toroidal (wrap-
around) topology, and regarded as representing an interior patch of a larger region. The bitstrings
defining Land Uses’ preferred conditions always contain 16 bits, but Environments differ in the
division of these bits between Biophysical Characteristics (variable across space, fixed over time)
and External Conditions (uniform across space, variable over time). External Conditions may
be either correlated (Flip Probability &) or uncorrelated (Flip Probability 3) from Year to Year.
Each bit of the Biophysical Characteristics bitstring of each Land Parcel is set to 0 or 1 with
equal probability and independently. In the real world, a complete lack of temporal or spatial
auto-correlation is unlikely to occur; these extreme cases are experimentally useful idealisations.

Experimental Environments are described using the syntax: P<p >-E< e >[c|u]-BET< b >,
where p is replaced by the length of the Land Parcel Characteristics bitstrings, e by the length of the
External Conditions bitstrings (the ‘c’ or ‘v’ indicates whether these are correlated or uncorrelated
from Year to Year), and b by the BET. In general, the LPP is set at twice the BET. Thus P12-E4c-
BET10 indicates 12 Land Parcel Characteristic bits, 4 temporally correlated External Conditions
bits, a BET of 10 and an LPP of 20. The first two parts of such an Environment type description
— e.g. ‘P12-E4c’ — specify its Heterogeneity Type.

Each experiment reported consists of a set of simulation runs, pitting two Sub-Populations
of Land Managers against each other. At the start of a run, each Land Parcel is assigned to a
different Land Manager. Whether created at the start of a run, or to take over a Land Parcel being
sold, a new Land Manager is equally likely to belong to either Sub-Population. All members of a
Sub-Population share the same Selection Algorithm. After 200 Years, the success of the two Sub-
Populations is assessed by counting the Land Parcels assigned to members of each. All simulation
runs in an experiment use the same two Selection Algorithms, and type of Environment (defined
by a fixed set of parameters e.g. P12-E4c-BET10). The runs differ only because a fresh seed is
generated for each run, for use in pseudo-random processes within the model. The binomial test
is used to determine whether one Sub-Population has finished significantly more runs holding a
majority of the Land Parcels than the other. We regard results as significant at the .01 level (1
tailed), although given the number of experiments carried out, caution is advisable in interpreting
those results not significant at a higher level.

Exploratory experiments suggested that the use and level of an Aspiration Threshold had an
important influence on a wide range of imitative Selection Algorithms. HR performed comparably
to imitative Selection Algorithms with the same Aspiration Thresholds in Environments with a lot
of spatial variation. For both imitative Algorithms and HR, and across a number of Environments,
an Aspiration Threshold near the BET gave the best performance. (The BET was almost always
set at the Random Choice Expected Yield — the Yield expected from a random choice of Land
Use, given the way Land Uses and Environments are constructed when a simulation starts. This
is half the maximum possible Yield, i.e. 8 in the models used here.)

The exploratory experiments also led to the development of a ‘standard set’ of Heterogeneity
Types of Environment. This uses seven partitions of a 16-bit Land Use bitstring between bits
matched against Land Parcel Biophysical Characteristics, and those matched against External
Conditions: (0 : 16),(1 : 15),(2 : 14),(4 : 12),(8 : 8),(12 : 4),(16 : 0). More partitions were
chosen with a majority of External Conditions bits than with a minority because experimental
results appeared more sensitive to the precise partition used in the former case. For each of the
six partitions in which there is any variation in External Conditions, this variation may be either
temporally uncorrelated or temporally correlated, giving 13 standard Heterogeneity Types.

Environments with higher inter-Year predictability should make higher Yields easier to obtain,
simply by sticking with successful Land Uses. Predictability of Yield from a given Land Use on
a given Land Parcel clearly decreases as the number of External Conditions bits increases, and
is higher if variation in External Conditions is temporally correlated than if it is uncorrelated.
However, it is not a unidimensional property. The variance of Yield for a given combination
of Land Parcel and Land Use — one obvious measure of predictability — does not distinguish



temporally correlated from temporally uncorrelated Environments. In either, a single External
Condition bit produces either 0 or 1 units of Yield each Year, and since the mean Yield produced
by that bit will tend toward 1/2 in the long term, the variance will tend toward 1/4. Variance
being additive, it will tend toward e/4 if there are e External Condition bits. Another measure
is the expected variance of Yield over the Years immediately following those Years with a given
Yield. It can be calculated from the binomial distribution that this will tend toward ef(1 — f),
where f is the Flip Probability. This is e/4 for temporally uncorrelated Environments, 7e/64 for
temporally correlated ones, so it would be the same for a temporally uncorrelated Environment
with an External Conditions bitstring of length 7, as for a temporally correlated Environment
with one of length 16. However, it does not completely capture the differences between temporally
uncorrelated and correlated Environments: in the former, the expected Yield from a given Parcel
and Land Use in Year y+1 is independent of the Yield in Year y, while in the latter it is not — so in
Environments of the two types with equal values for ef(1— f), the current Yield would give a better
estimate of next Year’s Yield (and, to a decreasing extent, of the Yields of subsequent Years) in
the temporally correlated one. This difference can be captured numerically in the expected value
of the first autocorrelation (Kendall 1976) of the time-series of Yields produced by a given Land
Parcel and Land Use, which will be (1 — 2f)/4, i.e. 0 for temporally uncorrelated Environments,

% or .1875 for temporally correlated ones.

3 Experiments and Results

Before describing our main experiments and their results, we note four simple analytical points,
which have implications for the pattern of results to be expected.

1. In P0O-E16u Environments, expected Yield is the same for all Land Uses. One might there-
fore expect to find no differences in competitive performance among Land Use Selection
Algorithms.

2. The Random Choice Expected Yield is the highest Aspiration Threshold level to give the
Land Manager a better than even chance of improving Yield when making a random choice.
It thus seems a reasonable guess at where optimum Aspiration Thresholds might lie.

3. If the LPP exceeds or equals the BET, a Land Manager using any Aspiration Threshold
Selection Algorithm with a Threshold also at or above the BET, will never have to sell a
Land Parcel on which it has already found a Land Use guaranteed to meet its Threshold:
Land Parcels are sold in ‘worst Yield first’ order, and the LPP gained from any other Land
Parcel sold will at least cancel out the loss due to that Land Parcel in the preceding Year.
With an LPP twice the BET, as used here, higher BETs should thus favour higher Aspiration
Thresholds.

4. Suppose we set the BET at 0, so Land Parcels are never sold, and the Flip Probability f at
%. For a given Land Parcel L;, call the highest Yield that can be guaranteed on that Land
Parcel by selecting the right Land Use the mazimin Yield, m; (this may differ between Land
Parcels). A maximin-guaranteeing Land Use also makes possible the mazimum Yield for
that Land Parcel (gained when the External Conditions are optimal for that Land Use), and
produces the best expected Yield of any Land Use. Calling the maximum achievable Yield
for that Land Parcel M;, this best expected Yield will be (m; + M;)/2, and Hm;R (HR with
Aspiration Threshold m;) will give a mean Yield approaching this (the best achieveable by
any Selection Algorithm) in the long run. At some point, the Hm;R Land Manager will
switch out of any Land Use that does not guarantee m; — since, sooner or later, m; will not
be achieved. Once a Land Use guaranteeing m; has been adopted, it will never be changed.

Using Hm;R will give this same expected Yield so long as f > 0, but (m; + M;)/2 is not
necessarily the best mean Yield achievable on L; by any Selection Algorithm if f # %: if
this Year’s External Conditions give some information about next Year’s, it may pay to



(a) HIR vs H8R (b) H2R vs HSR (c) H4R vs H8R (d) HBR vs H8R
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Figure 1: Wins for H8R in contests with H1IR, H2R, H4R and H6R in BET=8 Environments with
considerable uncorrelated temporal variation. Note the shift in favour of H8R from the second,
through the third, to the fourth Environment in each case.

choose a Land Use that risks a Yield below m; if it also currently offers better chances of
getting Yields above m;. This suggests optimum Aspiration Thresholds might be higher
in Environments with f = 1 than in otherwise identical Environments with f = 1. Also,
optimum Thresholds should increase with p (the length of the Land Parcel Characteristic
bitstrings): the number of matching bits in pairs of random bitstrings of length p will follow

a binomial distribution with mean p/2, so greater values of p will tend to raise values of m.

The experiments reported in sections 3.1 - 3.3 confirm the expectations generated by points
2-4, but reveal additional complexities. They show some evidence against those suggested by point
1; evidence supported by experiments and analysis mentioned briefly in 3.4 and to be reported in
detail elsewhere.

3.1 Environments with BET Equal to Random Choice Expected Yield

Experiments with a BET of 8 (and LPP of 16) were performed using all 13 members of the standard
set of Spatio-Temporal Heterogeneity Types, and 60 runs per experiment. H8R was matched
against each of H1R, H2R, H4R, H6R, H10R and H12R. Based on exploratory experiments, it was
predicted that an Aspiration Threshold of 8 would always do better than the higher Thresholds
tried (except in P0-E16u, where no differences were predicted), and would also do better than
the lower Thresholds in Environments of all Heterogeneity Types apart from those with a lot
of uncorrelated temporal variation, i.e. P0-E16u, P1-E15u, P2-E14u and P4-E12u. All these
predictions were confirmed at a significance level of .0001. Predictions and results for the remaining
experiments are shown in figure 1.

In this figure, and in figures 2 and 3, we aim to show both the predictions and results of
individual experiments, and the overall patterns which emerge. The latter should be interpreted
cautiously, particularly when based to any extent on individual results that are not highly signif-
icant. In these figures, a vertical bar is used to indicate the number of contests won by the HR
variant with the higher Aspiration Threshold in each experiment. Each group of bars covers a
particular pairing of HR variants, with the Heterogeneity Type of the Environment for a specific



experiment indicated below the corresponding bar. Predictions for individual experiments, and the
degree of one-sidedness in either direction necessary to confirm predictions at various significance
levels, are indicated as shown in the figure keys.

Predictions that H8R would outperform H1R, H2R and H4R in P4-E12u-BETS, and H1R and
H2R in P2-E14u-BETS8, were confirmed. So were predictions that H4R and H6R would outperform
H8R in P1-E15u-BETS. Two further predictions were not confirmed.

The result of the contest between HI1R and H8R in P0-E16u-BETS is interesting: in an Envi-
ronment of this Heterogeneity Type, as noted above, the expected Yield from any Land Parcel is
the same whatever Land Use is selected. The result may be a chance occurrence, but as discussed
in 3.4, there are reasons to think otherwise.

There appears to be a general shift in favour of H8R from the second through the third to
the fourth column of each group — that is, as the amount of uncorrelated temporal variation
decreases from P1-E15u-BETS8 through P2-E14u-BETS8 to P4-E12u-BETS8. There also appears
to be a shift against H8R from figure 1 (a) through to 1 (d), so far as Environments P2-E14u-
BETS8 and P4-E12u-BETS are concerned (rightmost columns in each graph), so that H6R does
best and H1R worst against H8R in these Environments. The relatively good performance of
low-Threshold variants of HR in the Environments of Heterogeneity Types P1-E15u, P2-E14u and
P4-E12u prompted a further series of 120-run experiments using all pairings of H1R, H2R, H4R
and H6R. The higher-Threshold variant was predicted to win in all contests (based on preliminary
experiments), except for those between H1R and H2R, for which no predictions were made. All
predictions were confirmed at a significance level of at least .001, with one exception: H4R vs H6R
in P1-E15u-BETS8, where the result was close to equality.

To summarise, with a BET of 8, equal to the Random Choice Expected Yield, the optimum
Aspiration Threshold for HR appears to be equal to the BET, except when there is a lot of
uncorrelated temporal variation, when the optimum is somewhat lower.

3.2 Low BET Environments

With a BET of 4, the performance differences between HR Algorithms with different Aspiration
Thresholds were more or less completely obliterated. With such a low BET, very few Land Parcels
would ever need to be sold. Even with a BET of 6, performance differences were greatly reduced,
although H6R and H8R outperformed H1R, H2R and H4R in a wide range of Environments.
H6R, H8R and H12R were all pitted against each other in 240-run experiments in Environments
of all 13 standard Heterogeneity Types. The clearest results were that H8R outperformed H12R
in most Environments with correlated temporal variation, while H6R outperformed H12R in P16-
E0-BET®6, the Environment with no temporal variation (see 3.4).

3.3 High BET Environments

Environments with BET=10 showed a more complex pattern than those with BET=8. The
standard set of 13 Heterogeneity Types was used. Predictions and results of the 60-run experiments
are shown in figures 2 and 3. Figure 2 deals with contests between either H8R or H10R on the
one hand, and HR variants with lower Aspiration Thresholds on the other, while figure 3 covers
contests pitting H4R against H6R, H8R against H10R, and H10R against H12R.

In the Environments with a lot of uncorrelated temporal variability, and hence very low Yield
predictability (light grey bars towards the left of each subgroup in figures 2 and 3), there was little
difference between Algorithms in any of the contests.

The six contests graphed in figure 2 show striking similarities. The patterns seen across the
Environments with correlated temporal variation are markedly different from those seen across the
Environments with uncorrelated temporal variation. In the former, the higher Threshold variant
always has an advantage, and this grows fairly smoothly as temporal variation decreases. In the
latter, there is little difference between variants at the highest amounts of temporal variation, the
lower Threshold variants do better in intermediate cases, and the higher Thresholds win at the
lowest levels of temporal variation. Comparing subfigures (c¢) and (d) with (e) and (f), the dip in



(e) H4R vs H8R

(c) H4R vs H10R

(a) H1IR vs H10R
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(f) H6R vs H8R

(d) H6R vs H10R

(b) H2R vs H10R
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Figure 2: Wins for the higher Threshold version of HR, in pairings of H10R against H1R, H2R,

H4R and H6R, and of H8R against H4R and H6R, in BET 10 Environments: uncorrelated and
correlated temporal variation (left and right members of pairs of bars) show different patterns.



(@) H4R vs HBR (b) H8R vs H10R (¢) H10R vs H12R
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Figure 3: Wins for the higher Threshold version of HR, in pairings of H4R with H6R, H8R with
H10R, and H10R with H12R, in BET 10 Environments. Note the dip and subsequent rise of wins
for H10R against H8R, as the amount of temporal variation decreases.



performance for the lower-Threshold variants appears to be deeper, and to occur at lower levels
of temporal variation, when these are pitted against HIOR rather than H8R.

Turning to figure 3, H10R outperforms H12R in all Environments other than those with a
lot of uncorrelated temporal variation. Subfigure (b) shows that in the contest between H8R
and H10R, in contrast to all other contests involving either of these variants, patterns among
the Environments with correlated and uncorrelated temporal variation are fairly similar: at high
levels of temporal variation there is little to choose between the variants, while at low levels H8R,
wins easily. In the Environment of perfect Yield predictability (P16-E0Q), HI0R does best, and the
major difference between the temporally correlated and uncorrelated cases occurs in Environments
close to this one: H8R’s advantage disappears in P12-E4c-BET10, but not in P12-E4u-BET10.
The results in P4-E12¢-BET10, P8-E8c-BET10 and P12-E4c-BET10, where the first and third
Environments show near equality while the second shows a clear advantage for H8R, were so
unexpected that a second set of experiments was run for these Environments, but with very
similar results. The corresponding dip in the performance of HIOR in the temporally uncorrelated
Environments strengthens the case for this being a real phenomenon.

Setting the BET at 12 was found, in exploratory experiments, to reduce differences between
Selection Algorithms, but mainly in Environments with fewer Land Parcel bits than External
Conditions bits. In the remaining Environments, the pattern of results was somewhat similar
to that found in corresponding Environments with BET=10. In P16-E0-BET12, H12R clearly
defeated all other variants of HR tried except H10R (it was predicted to defeat them all), and
this Environment differed very markedly from all others. In the P12- Environments, and most
markedly in P12-E4u-BET12, variants with lower Aspiration Thresholds did better, inflicting
clear and predicted defeats on H12 in two cases. In P8 Environments (as in all those with a
preponderance of External Condition bits), differences between Algorithms were not significant.

3.4 Overall Pattern of Results

Figure 4 summarises the effects of varying the Aspiration Threshold on the performance of HR, as
revealed by simulation experiments. It illustrates how Thresholds equal either to the BET, or to
the Random Choice Expected Yield of 8, perform against higher and lower Thresholds, showing
whether Environments of a particular BET and Heterogeneity Type lead to differences between
Thresholds, and if so, whether either or both reference values (the BET and 8) lie within the range
of Thresholds giving optimal or near-optimal performance. The shading given to each cell is based
on the overall tendency of results; some are more firmly based than others.

Heterogeneity Types with temporally uncorrelated variation in External Conditions occupy the
upper rows, those with temporally correlated variation the lower (with P16-EQ, which includes no
External Conditions, in between). Empty cells indicate possible kinds of Environment that have
not been used in experiments.

Note first that if the BET is 8, equal to the Random Choice Expected Yield, Aspiration
Thresholds approximately equal to the BET appear to work best, except in Environments with
very low Yield predicability. In Environments with very low but non-zero predictability, a rather
lower Aspiration Threshold does better; reasons to expect the best Threshold to be lower in these
Environments were explained at the start of section 3. P0-E16u is a special case, discussed below.

With a BET of 4, the Aspiration Threshold has little apparent effect on Land Managers’ ability
to gain or retain control of Land Parcels (it would still be expected to affect the accumulation
of wealth in Land Managers’ Accounts, but this has not been tested). The same flattening of
differences between Selection Algorithms occurs to a lesser degree with BETs 6, 10, and 12, being
most marked when Yields are most unpredictable from Year to Year. All this makes good sense:
differences between Aspiration Thresholds are reduced when the choice of Land Use makes little
difference to the Land Manager’s probability of achieving the BET.

With a BET of 6, the optimum Aspiration Threshold is 8 in most Environments; if temporal
variability is removed (P16-E0), an Aspiration Threshold of 6 seems superior, although evidence for
this is not conclusive (the similar result for P2-E14c is based on slight and conflicting evidence). It
is noteable that a threshold equal to the BET is in the optimal range for all BETSs, in Environments
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of this Heterogeneity Type. In a temporally unvarying Environment, a Land Use that produces a
Yield at or above the BET on a given Land Parcel when first used will always do so, and the Land
Manager can hold that Parcel permanently by retaining that Land Use. Setting the Threshold
below the BET would risk sticking with an economically unsustainable Land Use, while setting it
higher would risk abandoning a sustainable one.

For a BET of 10, optimal Aspiration Thresholds are very similar to those for a BET of 8 at
intermediate levels of Year-to-Year unpredictability — specifically, for all the temporally correlated
Heterogeneity Types except P12-E4c, and for two temporally uncorrelated Heterogeneity Types
— P8-E8u and P12-E4u. At both extremes of predictability, differences appear. With Yield
predictability sufficiently low, Aspiration Threshold makes little difference, presumably because
no Aspiration Threshold would give Yields at or above the BET, so most Land Managers are
replaced in most Years. At just above this level (P4-E12u), Thresholds rather below 8 do best;
this phenomenon occurred only at somewhat lower levels of predictability with a BET of 8, but
the difference between the two BET levels in P4-E12u Environments is slight, and may be due
to chance. At the opposite extreme, H10R does best when there is no temporal unpredictability
(P16-E0-BET10). In this type of Environment the probability of at least one of eight Land Uses
having a Yield of at least 10 on any given Land Parcel (so that H10R will eventually find a Land
Use guaranteeing the BET) is above 0.87. To a lesser degree, a Threshold of 10 also does best in
P12-E4c Environments, which are the next most predictable.

A simpler pattern is found with a BET of 12: Thresholds at least equal to the Random Choice
Expected Yield but below the BET do best, except when temporal variation is completely absent
(even here, H10R appears as good as H12R — the chance of at least one of the eight Land Uses
having a Yield of at least 12 on any given Land Parcel is just below 0.27), or highly unpredictable
(when performance differences vanish).

A special shading has been used for two top-row cells (P0-E16u-BET6 and P0-E16u-BETS).
This is not based wholly on results reported here. The Heterogeneity Type PO-E16u makes all
Land Uses equal in terms of expected Yield, and expected variance of Yield over time. However,
results to be reported in full elsewhere show that Sub-Populations using Selection Algorithms
that maximise the diversity of Land Uses employed do best in P0-E16u-BETS8. This is due to
the land sales mechanism described in section 2 (if land sales are blocked by using a very high
LPP, the effect disappears, while a zero LPP accentuates it). If the diversity of Land Uses on a
Sub-Population’s Land Parcels is low in all or most Years, many of them will tend to go out of
business at the same time, allowing those members of a competing Sub-Population with greater
Land Use diversity who happen to have done well, to buy up much of their land. Among Sub-
Populations using HR Algorithms, the greatest diversity will be found if either an unattainable
or a zero Threshold is used: in the former case random choices are made each Year; in the latter,
differences in Land Use present when the Managers gain the Parcels concerned persist.

Setting this special case aside, the optimal Threshold appears never to exceed whichever is the
greater of the Yield needed to break even (the BET), and the Random Choice Expected Yield, but
varies systematically with the characteristics of the Environment. Important determinants are the
BET, and the degree and pattern of temporal heterogeneity in the Environment — which affects
the degree to which knowledge of one Year’s Yield from a given Land Parcel and Land Use allows
prediction of the Yield in the following Year. These determinants interact in a moderately complex
pattern, but greater BET and greater predictability both tend to raise the optimal Threshold, as
might be expected: the former requires higher Yields, the latter makes them easier to attain.

4 Discussion

The primary finding of the simulation experiments reported is the influence of Aspiration Thresh-
olds on the dynamics of strategic interactions within our ABSS model of Land Use selection. The
Aspiration Threshold has important effects across a wide range of FEARLUS Environments. Re-
sults to be reported elsewhere show that these persist if the alternative to retaining the current
Land Use involves imitation of neighbouring Land Managers rather than random choice.
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If we are right in thinking that real-world land managers are often satisficing rather than
optimising in their land use decisions, the findings reported here have considerable relevance for
empirical studies, and for theoretical work such as Abadi Ghadim and Pannell (1999) and Pender
(1998), which takes a neoclassical approach, as well as for the agent-based studies described below.
In particular, they suggest that comparative studies of innovation in environments differing in
temporal heterogeneity or in the difficulty of breaking even would be useful. It should be possible
to investigate whether real-world land use systems show effects similar to our model by studying the
relationships between rates of land use change, land sales and farmer bankruptcies in environments
differing in respect of the unpredictability of economic returns and the difficulty of breaking even.
Farmers with high rates of land use change should tend to do relatively better as returns become
more predictable, and as yields required to break even get higher.

It does seem likely that real-world land managers are often satisficing rather than optimising
when making decisions. For a subsistence farmer, it is advisable to maximise the chance of
growing at least enough to eat (i.e., of reaching a certain threshold harvest), rather than the
ezxpected harvest. Even for a small farmer in an industrialised country, who is unlikely to starve,
maximising the chance of producing enough to stay in business for another year may often be the
priority. Some recent studies of agricultural innovation and the obstacles that prevent it, such
as Fujisaka (1994) discuss these obstacles in ways which can readily be interpreted in terms of
satisficing and aspiration thresholds.

The existing ABSS work most closely related to that described here falls into two categories:
spatially explicit models of rural land use, and work (with or without a spatial aspect) concerning
the effects of aspiration levels on the dynamics of strategies in the ‘Prisoner’s Dilemma’ and other
‘social dilemmas’ — situations in which two or more agents can each do best individually by acting
selfishly, but where all will end up better off if all act cooperatively. We mention a few examples
of each, choosing from among those closest to our own work.

Work in the first of these categories which also deals with aspiration levels is almost nonexistent,
but in a notable exception Rouchier, Bousquet, Barreteau, Page and Bonnefoy (2000) describe
the SHADOC model of irrigation systems in the middle Senegal valley. Water and common
infrastructure constitute shared resources, and farmers belong to organisations set up to run these.
After every growing season, each agent assesses its success, and if its criterion of satisfaction is not
met, may adopt the rules of another agent. The ‘criterion of satisfaction’ is clearly similar to our
Aspiration Threshold, but no systematic study of the effects of varying this criterion is reported,
and the focus is on overall outcomes rather than competition between strategies.

There are a number of other ABSS studies of land use which concern imitation (Weisbuch
and Boudjema 1999, Berger et al. 2001). For all such studies, it might be useful to compare
the dynamics of imitation with those resulting from an HR-like strategy: use of an aspiration
threshold, together with random experimentation when the threshold is not met. This would
help to distinguish the effects of agents changing their course of action when (and only when) the
current one gives poor results, from those specific to imitation.

In the Prisoner’s Dilemma (for full descriptions of this and similar abstract games see Harg-
reaves Heap and Varoufakis (1995)), each of the two players has two possible strategies, called ‘C’
and ‘D’, and in a single game, will always do better by playing ‘D’ whatever the other player does
— but if both play ‘D’, both do worse than if both had played ‘C’. In a single game, both players,
if self-interested and rational, will play ‘D’, but if the two are to repeat the game an unknown
number of times, various complicated strategies are feasible. Posch (1999) gave players of this
‘repeated Prisoner’s Dilemma’ different aspiration levels, in a study without any spatial aspect.
Players scoring below the aspiration level switched from C to D or vice versa, with a probability
which varied between players. With aspiration levels fixed for each player, the most successful had
very low aspirations — although mean scores were well above the aspiration level, unless a good
deal of ‘noise’ was added to the system. Allowing aspiration levels to adapt (moving toward actual
scores) led to higher aspiration levels and, in a noisy environment, to higher overall scores. In con-
trast, Kirchkamp (Kirchkamp 1999, Kirchkamp 2000), pitting agents against their neighbours on a
two-dimensional lattice, found that allowing agents to update learning rules which included a kind
of aspiration threshold reduced the range of two-player games in which repetition produced stable
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cooperation. Macy and Flache (2002) found a similar effect. These findings do not map in any
obvious way onto our own; our agents are competing primarily against an exogenous standard,
the BET, rather than each other. Taken with our own results, however, these studies indicate
that aspiration levels may be important across a broad range of agent-based simulation work and
related empirical and theoretical studies.
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