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Bistromathics … is … a revolutionary new way of understanding the behaviour of
numbers. … Numbers written on restaurant bill pads within the confines of restaurants do
not follow the same mathematical laws as numbers written on any other pieces of paper
in any other part of the Universe.

Douglas Adams, “Life, the Universe, and  Everything” (1982)

1 Introduction
This paper will explore the effects of errors in floating point arithmetic in two published agent-
based models: the first a model of land use change (Polhill et al., 2001; Gotts et al., in press), the
second a model of the stock market (LeBaron et al., 1999). The first example demonstrates how
branching statements with floating point operands of comparison operators create a high degree
of nonlinearity, leading in this case to the creation of ‘ghost’ agents — visible to some parts of the
program but not to others. A potential solution to this problem is proposed. The second example
shows how mathematical descriptions of models in the literature are insufficient to enable exact
replication of work since mathematically equivalent implementations in terms of real number
arithmetic are not equivalent in terms of floating point arithmetic. (Henceforth ‘mathematics’ and
‘arithmetic’ will refer to the use of real numbers by default.)

2 A model of land use change
The following describes the set up of a model of land use change that has emergent effects arising
from errors in floating point arithmetic. The model is based on a particular parameterisation, P, of
FEARLUS (Framework for Evaluation and Assessment of Regional Land Use Scenarios),
described in Polhill et al. (2001) and Gotts et al. (in press). In what follows, terms referring to
objects in the model are capitalised, and italicised on first use. FEARLUS consists of a set of
Land Parcels arranged on a 2D grid of squares, each of which is assigned a Land Use by Land
Managers (the agents in the model) using a Land Use Selection Algorithm each Year (a cycle in
the model). After Land Uses have been assigned, the Yield from each Land Parcel is calculated
according to the Land Use selected, and this is used to derive an amount of Wealth accrued by the
Land Manager owning the Land Parcel. This is followed by a process of exchange of Land
Parcels between Land Managers. Those Land Managers with negative Wealth put up enough
Land Parcels for sale to bring their Wealth to zero or more. Once all Land Managers who need to
have put Land Parcels up for sale, a new owner for each such Land Parcel is selected at random
from a set consisting of the neighbouring Land Managers with sufficient wealth plus one potential
new Land Manager. The cost of the Land Parcel is determined by a model parameter, the Land
Parcel Price which is constant over space and time. If a Land Manager has sold all of its Land
Parcels, it is deemed to be bankrupt, and plays no further part in the simulation.

Land Managers are divided into Subpopulations according to their Land Use Selection Algorithm.
In P, there are two Subpopulations, RS, whose members choose a Land Use at random for each
Land Parcel they own, and HR, whose members choose at random if they lost money on that
Land Parcel in the previous Year, but otherwise retain the same non-loss-making Land Use for



2

the current Year. Newly created Land Managers have an equal probability of belonging to HR or
RS.

There are two Land Uses to choose from in P, lu1 and lu2. The Wealth accrued to a Land
Manager who puts lu1 on a Land Parcel in the decision phase is –0.6, whilst for lu2, it is +0.4.
The Land Parcel Price is set to 10000 in P, which is intended to prevent Land Managers from ever
accruing sufficient Wealth to be able to afford to buy a Land Parcel during the 200 Years for
which the model is run. The process is summarised in Figure 1.

All Land Managers begin with Wealth 0 after having been assigned their first Land Parcel. At the
start of the run, Land Parcels are initially assigned Land Uses at random, with an equal
probability of lu1 or lu2 being applied.
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Figure 1 — UML-style diagrams based on Booch et al. (1999) showing the yearly cycle. At the
simplest level of detail, the coloured boxes represent a statechart diagram showing the flow from
one state during the yearly cycle to the other, with the dashed line showing the transition from one
Year to the next. Inside each coloured box is an activity diagram showing more detail on the
processing involved in each state. The dotted lines between the arrows to/from the concurrent
process lines are intended to indicate many objects engaged in the same activity. In the ‘Purchase’
activity diagram, the ‘random()’ method in the Stack class returns a random member of the stack
with equal probability of any member being selected.

The expected outcome, given enough time, is for all Land Parcels to be owned by members of HR
on a one-to-one basis, each using the profit-making Land Use (lu2); though there is a small non-
zero probability that a member of RS will survive for any finite number of Years. However,
whilst some runs do yield the expected result in the 200 Year time period, more runs than
expected end up with at least one member of RS apparently persisting for many years, and in
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some cases even acquiring an extra Land Parcel. What is particularly strange is that these
members of RS continue using the loss-making Land Use (lu1), but never go bankrupt.

To understand what is happening requires an in-depth analysis of the output of the model,
focusing on Land Managers acquiring an extra Land Parcel. In one run (environment size
25 × 25), one such Land Manager, lm879, receives a Land Parcel, lp254 at the end of Year 2 and
has initial wealth 0. Over the next 25 Years, lm879 chooses lu2 fifteen times, and lu1 ten times.
The accumulated Wealth should be (15 × 0.4) – (10 × 0.6) = 0 at the end of Year 27 and lm879
should not have to sell lp254 — the code stipulates that this happens only if the Wealth is less
than 0 (see Figure 1, in the ‘Sale’ box). However, accumulated floating point errors in adding 0.4
fifteen times and subtracting 0.6 ten times from the Wealth of lm879 means that instead of 0,
lm879 has a Wealth of –2.22045 × 10–16. As a consequence, lm879 puts lp254 up for sale in the
‘Sale’ step, and receives 10000 units of Wealth. Since 2.22045 × 10–16 is too small a quantity to
subtract accurately from 10000 in floating point arithmetic, lm879 now has a Wealth of 10000.

At the same time in the ‘Sale’ step of Year 27, the owner of a neighbouring Parcel to lp254,
lp195, has Wealth –0.6 after choosing lu1 in the ‘Choose Land Use’ step. Neighbouring Parcel
lp195 is then also put up for sale. Once all Land Managers that need to have put their Land
Parcels up for sale, new owners are sought for them. When writing the code for FEARLUS, the
programmer (GP) assumed that no Land Manager who had put a Parcel up for sale could possibly
be eligible to buy one since: (a) A Manager only sells a Parcel if its Wealth is less than zero,
(b) on putting a Land Parcel up for sale, a Manager receives the Land Parcel price, and must
therefore have Wealth less than the Land Parcel Price, (c) the only Land Managers eligible to buy
Land Parcels are those with Wealth greater than or equal to the Land Parcel Price.
Mathematically, this is correct, but as the analysis has shown so far, (a) and (b) do not quite hold
when errors in floating point arithmetic are involved. Since lp254 has not yet been fully
transferred, lm879 is still the owner of a neighbouring Parcel to lp195,1 and since lm879 has
Wealth 10000, it can also afford to buy it. (See the ‘Purchase’ box in Figure 1.) With probability
0.5, lm879 is selected over a potential new Land Manager as the new owner of lp195. A further
programmer assumption, that only new Land Managers have no Land Parcels when becoming the
owner of a Land Parcel (also mathematically correct for real numbers but not for floating point),
means that lm879 loses no Wealth on acquiring lp195.

Land Managers that have had to sell all their Land Parcels in step 3 are removed from the
‘Choose Land Use’ schedule step and from the ‘Accrue Wealth’ schedule step. The software
objects that store these Land Managers are not destroyed by the program since they may be used
for reporting purposes. The situation at the end of Year 27 is therefore that lm879 owns lp195, has
Wealth 10000, is still a valid object in the system, but does not appear in the list of Land
Managers to be called in any of the steps of the simulation schedule where ‘each Land Manager’
appears in the UML diagram in Figure 1.

In Year 28, the new owner of lp254, lm2042, chooses lu1 in the ‘Choose Land Use’ step, and
loses 0.6 units of Wealth in the ‘Accrue Wealth’ step. Meanwhile, lm879 has not made any
selection of Land Use for lp195, and the latter’s Land Use from Year 27, lu1, remains unchanged.
In the ‘Accrue Wealth’ step, lm879 is not asked to harvest, as it is not scheduled to do so, and its
Wealth remains unchanged despite lu1 being applied to its Land Parcel. In the ‘Exchange Land
Parcels’ step, lm2042 puts lp254 up for sale, and lm879, with Wealth 10000, is an eligible new
owner. Once again, the dice fall in lm879’s favour, and it is selected as the new owner of lp254
rather than a potential new Land Manager. This time, lm879 does pay 10000 units of Wealth to
own lp254, and the situation at the end of Year 28 is that lm879 owns Land Parcels lp195 and
lp254, has zero Wealth, and is not on the schedule.

                                                     
1 Technically, lm879 has no members on its Land Parcels owned stack (they have all been removed during
the ‘Sale’ step), but the owner property of lp254 is still set to lm879 (and is not changed until the Land
Parcel is found a new owned in the ‘Purchase’ step). See Figure 1.
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From then on, lm879 remains in this ‘undead’ state until the simulation is terminated, never
making any Land Use decision on its accumulated estate of lp254 and lp195, never gaining or
losing any Wealth, and never putting either Parcel up for sale. Both Parcels retain the same loss-
making Land Use lu1 chosen by the owners who lost them to lm879.

The creation of ‘ghost’ Land Managers thus requires a number of coincidences to occur: (a) The
real-valued Wealth of a Land Manager, A, must reach exactly zero. For this to happen A must
choose lu2 one and a half times as often as lu1 despite both having equal probability of selection
by a member of RS. Such sequences of Land Use selection are of length 5i, with 3i selections of
lu2 and 2i selections of lu1, where i is a positive integer. A member of HR will not get into this
situation because when it chooses lu2 for the first time it will apply it from then on. Since a
member of HR choosing lu1 the first time it makes a Land Use decision will go bankrupt, the
surviving members of HR are all those that chose lu2 in their first decision. (b) The floating point
error in the Wealth calculation of A must result in a negative number small enough in magnitude
that when subtracted from 10000 the result is 10000. To get an idea of how likely this is, we
checked all possible sequences of length 25 involving 15 selections of lu2 and 10 selections of lu1
for which the real-valued Wealth is greater than zero until the 25th selection. Of the 112227
possible such sequences, 7496 had the floating point Wealth exactly equal to zero, 7195 had
floating point errors resulting in a positive Wealth, and 97536 (about 87%) had floating point
errors resulting in a negative Wealth. All of the cases with negative Wealth had the potential to
create ghost Land Managers. For shorter sequences, the proportion that have the potential to
create ghost Land Managers is smaller, with 75% for sequences of length 20, 54% for length 15,
21% for 10, and 0% for 5. (c) A neighbouring Land Manager, B, must go bankrupt in the same
Year. (d) Land Manager A must then be selected (with probability 0.5) over a potential new Land
Manager as the new owner of B’s Land Parcel.

It is then reasonable to ask, given that some runs have no such problems, whether the problem is
sufficiently rare that it can be ignored. To explore this, we ran a model consisting solely of
members of RS. Given that these Land Managers choose at random with an equal probability of
selecting lu1 and lu2, a time-series graph showing the number of times each Land Use is applied
in each Year should show roughly equal applications of each Land Use. Instead the outcome, for
any seed, is much like that shown in Figure 2, with the application of lu2 gradually declining as
more and more ghost Land Managers occupy the space. This demonstrates that floating point
errors have the potential to create a systematic bias in the behaviour of a model.

This effect has arisen purely because of errors in floating-point arithmetic accumulating through
repeated additions of numbers (0.4 and –0.6) that cannot be exactly represented in binary, which
allowed the model to enter states that were not anticipated by the programmer because they are
not possible mathematically. Fortunately, none of the results published using this model (Polhill
et al., 2001; Gotts et al., in press) have used such settings, and their validity is unaffected by
problems with floating-point arithmetic documented here. This example does raise the issue,
however, of how sensitive an agent-based model can be to floating point errors. Any branching
statement in the agent’s decision mechanism (here in the decision to sell land) containing a
comparison expression involving a floating-point variable creates a high degree of nonlinearity
with respect to that variable. As this example has shown, the 15 decimal places of accuracy
provided by double precision variables was not enough. For now, we can avoid these problems
through using parameters that can be exactly represented in binary, but remedial steps will need to
be taken to manage errors in floating point arithmetic should a scenario require us to use
parameters that do not meet this demanding requirement.
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Figure 2 — Systematic bias in a run of the FEARLUS model in Figure 1 using Subpopulation RS
only. The space should thus contain a roughly equal proportion of lu1 (red) and lu2 (green) Land
Uses, but by Year 750, the situation is as shown on the left. Black lines separate Land Parcels
owned by different Land Managers, and the image shows a number of Managers owning two
rather than one Land Parcels. The time-series graph on the right shows the gradual decline in the
use of lu2 as more and more ghost Land Managers are created.

3 The Artificial Stock Market
The Artificial Stock Market (ASM; LeBaron et al., 1999) is a well-known agent-based model that
has been used by other authors as a basis for their work (e.g. Chen & Yeh, 2002). In this model,
agents have a choice between investing in a safe bond with a fixed interest rate, and a risky stock
in limited supply with an autoregressive stochastic dividend dt calculated as per equation [1]
(LeBaron et al., 1999):

( ) ttt dddd µρ +−+= −1 [1]

where d is the average dividend (a model parameter), µt is a stochastic component sampled from
a Normal distribution with zero mean and constant variance, and ρ is the autocorrelation
parameter: if 0 then dt and dt – 1 are uncorrelated, and if 1, dt and dt – 1 are maximally correlated.

Agents adapt their strategies for choosing how much to invest in a series of repeated cycles using
a Genetic Algorithm. The ASM has been shown to replicate features in time-series from real
stock markets, such as weak forecastability and volatility persistence (LeBaron et al., 1999,
p. 1512). These phenomena cannot be explained by the well-established Efficient Market
Hypothesis, under which prices only change when there is new relevant information, meaning
that they are not forecastable at all and are less volatile than prices observed in real markets; from
this Shleifer (2000) argues that, “More than news seems to move stock prices.” (p. 20).

The source code for the ASM is written in Objective-C, and is available for download at
http://prdownloads.sourceforge.net/artstkmkt/ (we have used version 2.2.1 — the most recent
stable release at 28 April 2003). Having obtained the code, we created a baseline version using a
separate random number generator for the stochastic component µt of the dividend. This is to
prevent any other modifications we make from having a disproportionate effect on the model. The
random number generator in the original code used to get a sequence of numbers for µt is also
used for other purposes (e.g. in the GA). If the effect of other modifications we make is to change
the number of times the random number generator is sampled in the GA or elsewhere, then this
will affect the sequence of numbers for the dividend. With the dividend affected, it would not be
possible to gauge whether there are any long-term effects on the behaviour of the model of the
other modifications made to the code. The modification for the baseline is shown in Figure 3.
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We then created two new versions to test the sensitivity of the ASM to errors in floating point
arithmetic (Using Swarm release 2001-12-18 on a Sun Blade 1000 running Solaris 2.8). Version 1
modifies the implementation of equation (4) from LeBaron et al.’s paper (p. 1491) (Figure 4), and
Version 2 modifies the implementation of equation (14) (p. 1496) (Figure 5). Neither
modification should make any difference to the behaviour of the software according to the laws of
mathematics. Version 1 computes (A/B) – (C/B) rather than (A – C)/B, and Version 2 computes Z
+ Y + …  + A, rather than A + B + … + Z.

Dividend.m

 26        normal=[NormalDist  create: [self getZone]
                   setGenerator: randomGenerator
                   setMean: 0 setVariance: 1];

Original Code

 26        normal=[NormalDist  create: [self getZone]
                   setGenerator: [MT19937gen create:
                   [self getZone] setStateFromSeed: 456987123]
                   setMean: 0 setVariance: 1];

Baseline

Figure 3 — Modifications to the original code to create the baseline version with a separate
random number generator for the dividend of the risky stock.

BFagent.m

878        demand = -((trialprice*intratep1
                                - forecast)/divisor + position);

Baseline / Original Code

878        demand = -(((trialprice*intratep1/divisor)
                              - (forecast/divisor)) + position);

Version 1
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Figure 4 — Modifications required to create Version 1 of the ASM, involving a change to line
878 of the Objective-C source file BFagent.m. Since division is distributive over subtraction, this
change should have no effect according to the laws of arithmetic.
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Specialist.m

 189        index = [agentList begin: [self getZone]];
 190        while ((agent = [index next]))
 191          {
 193            demand = [agent getDemandAndSlope: &slope
                                         forPrice: trialprice];
 195-196        if (demand > 0.0) bidtotal += demand;
 197-198        else if (demand < 0.0) offertotal -= demand;
 200          }

Baseline / Original Code

 189        index = [agentList begin: [self getZone]];
 190        [index setLoc: End];
 191        while ((agent = [index prev]))
 192          {
 194            demand = [agent getDemandAndSlope: &slope
                                         forPrice: trialprice];
 196-197        if (demand > 0.0) bidtotal += demand;
 198-199        else if (demand < 0.0) offertotal -= demand;
 201          }

Version 2

Figure 5 — Modifications made to the ASM for Version 2 highlighted in bold. (Some irrelevant
lines, which are the same in both versions, have been removed.) Essentially, the sum computed in
equation (14) in LeBaron (1999) to clear the market for the risky stock is totalled in reverse order
of the agents. Since addition is associative, the order the agents are called to make the sum should
not make any difference to the behaviour of the model according to the laws of arithmetic.

The results are summarised in Figure 6. Using a graph plotted at a resolution of 250 time steps,
the baseline, Version 1 and Version 2 show a difference in the behaviour of the volume at about
the 6000 cycle point, and despite having the same dividend, differences continue to be observed
thereafter.

The statistical properties of the output that the authors use to claim a match with properties of real
markets seem by eye not to be affected. Formal verification that the statistical properties are
unaffected is the potential subject of future work. Though unlikely, it is not inconceivable for the
verification to fail: rounding errors in floating point numbers are not random (Higham, 2002),
leaving open the possibility of introducing a bias through implementing an equation one way
rather than another. This may be related to the systematic bias seen in the RS-only run of the
FEARLUS model discussed above.

The fact that implementing the mathematical formulae in LeBaron et al.’s paper in different but
mathematically equivalent ways changes the output of the model raises a question mark over any
exact replication of their work. At the platform level, compiler optimisation settings can affect the
way that expressions are evaluated (Goldberg, 1991), meaning that potentially, different outcomes
could occur on different machines even when using the same source code. However, the
modifications introduced were intended to illustrate the possible effect of implementing the ASM
from its description in the literature rather than by using the authors’ source code. If nothing else,
the differences in behaviour highlight how critical making source code available to other
researchers can be, since otherwise exact replication of results would be difficult. The source code
for the popular and oft-cited agent-based model SugarScape (Epstein & Axtell, 1996) is not
publicly available, for example, though the book contains many equations that have the potential
to introduce errors in floating point arithmetic given appropriate parameter settings, e.g. the
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pollution formation rule Pαβ (p. 47), the agent inheritance rule I (p. 67), and the agent welfare
function (p. 97).

Version 2

Version 1

Baseline
Version

Figure 6 — Divergence of behaviour in various versions of the ASM. The same output is seen for
the first 6000 cycles, but thereafter there are differences in the number, height and width of peaks.

4 Floating point arithmetic and the IEEE 754-1985 standard
A real number n can represented in any base b without loss of precision using two variables, a
fraction, f, also a real number, known as the mantissa or significand, and an integer exponent, e,
such that n = fbe, with f being smaller in magnitude than b.

In a computer, there are a discrete set of values that the binary significand can take, meaning that
most fractions are not exactly representable. For example, 0.1 (in decimal) is not an exactly
representable number (Wallis, 1991a). Indeed, of all the fractions 0.1i, i = 1, …, 9, only 0.5 is
exactly representable. An arithmetic operation (plus, minus, multiply, divide) on two floating
point numbers is also not necessarily going to result in a number that is exactly representable (e.g.
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1 / 3). There are thus three potential sources of error in a single arithmetic calculation: conversion
from a decimal to a binary number for each operand, and a rounding error from the exact result to
a representable result given the limitations on the significand.

Historically, computer manufacturers implemented floating point arithmetic in various ways,
creating difficulties with porting code. Programs that worked in one machine could cause
exceptions to be raised on another, even with simple operations such as setting y = –x or y = x / x
(Wallis, 1991b). The IEEE 754 standard (IEEE, 1985) changed this, and now it is unusual to find
a non-conforming floating-point unit in a computer.

The IEEE standard provides strict definitions for 32-bit (single) and 64-bit (double) precision
floating point formats, and a more flexible definition for extended formats. It stipulates that the
accuracy of arithmetic operations be such that the nearest representable number to the infinitely
precise result be delivered to the destination.2 It requires that the user be able to set the rounding
mode to one of four possibilities: round-to-nearest even (the default), round towards positive
infinity, round towards negative infinity, and round-to-zero (truncate). It further requires that
conforming architectures generate trappable exceptions in various cases where the result of a
calculation has not been exactly representable in the destination format.

The standard is not designed to enable precise reproducibility in all platforms, however. The
format of the destination is not stipulated to be the format suggested by the type of the variable.
For example, Intel floating-point units work using 80-bit double extended format by default, even
if a variable is defined by a programming language to be a 64-bit variable. Although the floating-
point unit can be configured to do calculations in 64-bit arithmetic (Intel, 2003), compilers do not
necessarily issue instructions to do this (e.g. Borland C compiler, and the GNU C compiler in
Cygwin). For example, the calculation 253 / (253 – 1) is, in binary, the repeating fraction
1.0…52…010…52…01 …, where “0…x…0” is replaced with x zeros. The double precision 64-bit
format has 53 bits for the significand, and therefore the nearest representable number is
1.0…51…01, rounding up the least significant bit. However, in Intel’s 80-bit arithmetic, with 64
bits for the significand, the result delivered to the destination is 1.0…52…010…10…0, which is
then rounded to the 64-bit variable as 1.0…51…00. Nevertheless, Intel’s floating point
architecture is fully IEEE 754 compliant.

One platform that doesn’t fully comply with IEEE 754 is Java (Kahan & Darcy, 2001). Java
provides no facilities for checking exception flags for any errors in floating point computations,
and no facilities for changing the rounding mode. Since many popular agent-based modelling
platforms are written in Java (Ascape, RePast) or provide Java interfaces (Swarm), this is bound
to be contentious. Without these facilities, Java programmers are severely impaired: they cannot
easily check whether or not a series of calculations has caused an inaccurate result, and they
cannot directly implement interval arithmetic (see below). It is possible to get equivalent
functionality in Java, but not without considerable effort on the part of the programmer (Darcy,
pers. comm.).

5 Interval arithmetic
A comparison of various techniques for handling errors in floating point errors concluded that
interval arithmetic offered a safe approach (Polhill et al, subm.) in that it could be used to provide
a warning when a comparison operator might deliver the wrong result due to accumulated floating
point errors. The idea behind using interval arithmetic is always to ensure that the true value of a
calculation is within known bounds. Of the available forms that interval arithmetic can take,
Ullrich & von Gudenberg (1991) suggest that those representing the bounds explicitly are most
                                                     
2 However, this is the precise result of operating on the floating point operands, not on the original numbers
the operands may have been rounded from. Thus, for example, the result of 0.4 × 0.1 in IEEE 754 floating
point arithmetic is not the nearest representable number to 0.04, but the nearest representable number to the
product of the nearest representable number to 0.4 and the nearest representable number to 0.1.
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successfully implemented in a computer. In particular, it is possible to use the IEEE 754
stipulated rounding mode functions to compute a minimum and maximum result for each
calculation: one computed using round towards negative infinity, and the other using round
towards positive infinity. Let an interval be represented by [r, s], where r ≤ s. Let x represent the
smallest floating point number that is not less than x, and x represent the largest floating point
number that is not more than x, then the arithmetic operators are defined (Alefeld & Herzberger,
1983):

[ ] [ ]    [ ]21212211 ,,, ssrrsrsr ++=+ [2]

[ ] [ ]    [ ]21212211 ,,, rssrsrsr −−=− [3]

[ ] [ ]        { }[
       { }]21212121

212121212211

,,,max
,,,,min,,

ssrssrrr
ssrssrrrsrsr

××××
××××=×

[4]

[ ] [ ]        { }[
       { }]21212121

212121212211

,,,max
,,,,min,,

ssrssrrr
ssrssrrrsrsr

÷÷÷÷
÷÷÷÷=÷

[5]

There are then two forms for the comparison operators, echoing modal logic (Kripke, 1963): a
‘necessarily’ form where the comparison is true iff it is true for all pairs of members of each
operand, and a ‘possibly’ form, where the comparison is true iff it is true for one or more pairs of
members of each operand (Alefeld & Herzberger, 1983). Let >L represent ‘necessarily greater-
than’ and <M represent ‘possibly less-than’, and similarly for the other comparison operators.
Then:

[ ] [ ] [ ] [ ] 212211212211 ,,;,, rssrsrsrsrsr ML >⇔>>⇔> [6]

[ ] [ ] [ ] [ ] 212211212211 ,,;,, srsrsrrssrsr ML <⇔<<⇔< [7]

[ ] [ ] ( ) ( ) ( )
[ ] [ ] ( ) ( )21212211

2121212211

,,
;,,

srrssrsr
ssrrsrsrsr

M

L

≤∧≥⇔=
=∧=∧=⇔=

[8]

In a section of code where x > y leads to an action, it is possible to ensure that, regardless of
floating point errors, the action only takes place when it should by replacing x and y with intervals
containing the true values, and performing the action if x >L y. To check that the action is only not
executed when it should not be, then after x >L y returns false, there should be a further check
whether x >M y. If the latter is true, a warning should be issued to the effect that there is no longer
certainty that the program has executed the correct instructions in accordance with the model
design. A similar exercise for other comparison operators ensures that no action takes place
unless it necessarily should and no action does not take place that possibly should without a
warning being given. A model run can then be known to have executed without deviating from
the design due to floating point errors given the absence of a warning.

Implementing intervals in FEARLUS should be a relatively trivial exercise, since FEARLUS only
makes use of the basic arithmetic operators in calculations. However, this has not turned out to be
the case. There are a number of places in the FEARLUS code where a weighted selection is made
between various alternatives, in which the chance of selecting an alternative is given by its weight
divided by the sum of the weights of all the alternatives. A trivial example is in selecting which
Subpopulation a newly created Land Manager will belong to. This is not an issue in the example
above because the probability of belonging to HR or RS is 0.5, which is exactly representable in
binary floating point. If there were three subpopulations to chose from with equal probability,
then an issue would arise because 1/3 would have to be represented using the interval [ 1/3,
1/3 ]. More generally, however, consider a choice between two alternatives U and V, where the
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weight for U is u = [1, 2], and that for V is v = [2, 3]. Looking at the numbers, the probability of
choosing U, P(U), has then a minimum of 0.25 when u = 1 and v = 3, and a maximum of 0.5
when u = v = 2. Similarly P(V), is in the interval [0.5, 0.75]. Since there is uncertainty in their
relative probabilities, it is not clear how to choose between U and V in an unbiased manner.

In the Artificial Stock Market, 250,000 cycles of the model are used to enable agents to learn
before generating the time-series on which the analysis was based (LeBaron et al, 1999, p. 1499.)
Given that simply rearranging terms in a single mathematical expression changed the behaviour
of the Volume as early as 6000 or so cycles into the model, it is conceivable that after 250,000
cycles, there could be a considerable number of comparisons in which the outcome is uncertain
were interval arithmetic to be used.

Approaches to managing floating point errors such as interval arithmetic have various properties
that may need to be considered in evaluating them. Approaches such as interval arithmetic are
safe in that they ensure the model behaves as though it is using real numbers until a warning is
given. This might impose an unacceptable constraint on the model in that it will not be possible to
run it for the required time period without a warning being given. A less stringent requirement
could be robustness, in which the floating point error management approach could provide some
guaranteed protection against the model entering unanticipated or invalid states through floating
point errors. In FEARLUS, for example, ghost Land Managers could be prevented by explicitly
representing the state of a Land Manager as ‘bankrupt’ and then preventing bankrupt Land
Managers from buying Land Parcels. However, this would not protect against Land Managers
with zero real-valued wealth from going bankrupt when they shouldn’t. Another potential
property an approach might have is platform independence, which would facilitate exact
repetition of results. At the very least, however, floating point error management techniques
should not allow a systematic bias in the behaviour of the model. Polhill et al. (subm.) contains a
comparison of various approaches.

6 Conclusion
In an ideal world, floating point arithmetic should not be something that agent-based modellers
need to trouble themselves with. This paper has demonstrated that the world is far from ideal,
through two examples from published agent-based models. The first example illustrates how
branching in agent decision mechanisms based on comparisons involving floating point variables
can lead to emergent effects with an entirely unwelcome element of ‘surprise’ because of the high
degree of nonlinearity this introduces, and the seeming consequent demand for infinite precision.
The second example shows the necessity for authors to release their source code in public domain
if there is to be any chance of other researchers repeating their results with any degree of
precision. Mathematical equations in models can be implemented in a number of different ways
in a computer program, and although these may be mathematically equivalent, they are not
equivalent in terms of floating point arithmetic.

David Hales, in a presentation at Marseille (Edmonds & Hales, 2003), stated that
reimplementation of agent-based models should not use the original source code, as they would
then introduce the same artefacts. A distinction needs to be made between reimplementation and
repetition in this context. A supposed advantage of using computer simulation is that experiments
can be exactly repeated, allowing the confirmation of the results obtained by other authors,
artefacts and all. Such functionality is not typically available in the natural sciences — it is like
being able to reuse the apparatus and samples to take exactly the same measurements as in the
original experiment. Reimplementation is, of course, a more rigorous test of a reported effect, but
this does not necessarily mean that repetition is without value. Repetition is an exercise
researchers can undertake themselves with relatively little effort. Compiling the model on
different platforms (e.g. a dual-boot Linux/Windows PC), at least provides a check that results are
not dependent on such things as operating system, compiler and software library versions. 
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Traditionally, a number of heuristics have been used for dealing with errors in floating point
arithmetic, such as using small tolerances when making comparisons, or writing the result of an
operation to a string buffer with a degree of accuracy not greater than that provided by the
floating point numbers and then copying the result out of the buffer into the floating point
variable. Whilst such measures provide some ability to cope with the problems of floating point
errors, they do not provide any certainty that a given run has strictly followed the model design
(Polhill et al., subm.). Such certainty is provided using interval arithmetic: it can be known at the
point of comparison that, even allowing for floating point errors, the correct course of action is
being taken according to the design of the model. However, even this is no panacea: use of
intervals creates difficulties for certain algorithms such as weighted selection between alternatives
and sorting; it also limits the number of cycles a model can be run before accumulated floating
point errors mean there is uncertainty about whether the model is behaving according to the
design.
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