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Applying Genetic Algorithmsto Land Use Planning.
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Abstract. This paper explores the potential of applying
Genetic Algarithms to land we planning, a spaial
alocation problem. Two genotype representations are
proposed: a fixed-length genotype composed of genes that
map directly to a land parcel's use, and a variable-length,
order-dependent  representation making allocations
indirectly via a gready algaithm. The fixed-length
genotype is used within a standard genetic algarithm
framework but the variabl e-length genotype requires novel
breeding gperators to be defined and post-processng o
the genotype structure to identify and remove duplicate
genotypes. The two approaches are mwmpared an a red
land we planning problem and the strengths and
weeknesses of each approach are identified.

Key Words: representation, messy GAs, non-fitness
information, land wse planning

1 Introduction

Land use planning is a spatial alocation problem,
where the planner, by manipulating the proportions
and locations of land uses, seeks to satisfy one or more
goals. Land use planning is a potentialy chalenging
search and optimisation task, as the planner must
frequently take into acocount complex non-linea
interactions between parcds of land allocated to
particular land uses.

GAs have severd potential advantages as land wse
planning tods over more traditiona methods. While
GAs cannot be guaranteed to find an optimum solution
[6], their efficiency in finding "good enough” solutions
is well known [8]. In the @se of a land use plan,
all ocations resulting in gains over the arrent land use
define a minimum level of utility, while ability to
generate allocations equivalent to those of an expert
advisor is the goal. When used practically, it is also
likely that the "optimum" plan found by the GA will
form the Strategic basis of an implemented plan, with
further practitioner customisation to med tacticd
management nedls, rather than being implemented as
it gdands. The goal in most land we planning
applicationsisto support rather than make dedsions.

The population basis of GA search is particularly
useful in land use planning since depending on the
replacement strategy adopted, it is posshle to find a
range of good candidate solutions. Examination of the
differences between these solutions can lead to an
enhanced understanding o key locations and
processes.

GAs utility as the foundation of flexible todls,
capable in arange of applicaion domains, is enhanced

by the independence of the GAS seach and
optimisation medanisms from their evaluation
methods. GAs robust ability to find acceptable
solutions in complex seach spaces also adds
credibility to the solutions found. Exploiting the
flexibility and robustness of GA search is, however,
dependent on the istence of an appropriately
responsive model to evaluate candidate solutions, the
effedive design of a representation for the dements of
the applicaion and a cmpatible well-parameterised
set of operators[4].

This paper presents a comparison of two land-use
planning GAs with common underlying structure but
contrasting representation and gperator sets. Sedion 2
examines the origins of the dements integrated within
this reseach. Sedion 3 gives an overview of the land
use planning domain and the wider research projed of
which the GA application is a key part. Sedion 4
detail s the GA representations considered and the two
contrasting representations being pursued. Sedion 5
presents the operator set and the use of non-fithess
information. Sedion 7 examines the e&perimental
results achieved and the visuali sations used to explore
the features of the terminal population. Sedion 8
summarises the findings.

2 Rdated Work

The cmmon underlying GA structure is based on
Davis Object-Oriented GA [4], employing fixed size,
ungtructured populations, with genotype uniqueness
enforced and individual replacement of the lowest-
fitnessgenotypes by offspring. Seledion is rank-based,
utilising alinea fitnessnormali sation function [15].

Explicitly spatial  representations [2] were
considered, but these were rgjeded as impractical for
the land use planning applicaion becuse they
increased the magnitude of the optimisation problem
and introduced further significant problems in
trandating the optimum solutions found into practical
land use plans. Eshelman’s analysis of building block
disruption [7], however, made it posshle to consider
the dternative of treating land use dlocation as a
multiple-parameter, design optimisation problem using
a one-dimensional genotype [1]. This led to the
implementation of the land-block representation
(Sedion 4.2).

Concern over limitations on the ultimate sze of land
alocation problems that could be successully
represented in this way led to further consideration of
dternative representations and the  utility of
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hybridising the GA with other algorithms. The best
known examples of GA hybridisation are those with
local seach operators, to ensure the optimality of
solutions once the general nature of the optimum
solution has been found by the GA [8]. Cox et d.,
however, demongrated a more general hybridisation
approach, where a series of heurigics and algorithms
were cmbined with the GA to achieve a solution [3].
An exigting land alocation algorithm [10], whose
operation is largely unaffected by the number of land-
blocks to be all ocated, was thus considered as the basis
for a hybrid land alocation GA. This resulted in a
hybrid GA employing a percentage and priority
representation (Sedion 4.3).

Representing the candidate solutions for the
percentage and priority GA, however, required a more
flexible representation than used in the land-block GA.
The information-rich, messy GA representation
developed by Goldberg et a. [9], with its use of
variable-length  genotypes, order dependent
interpretation of gene values, mechanisms for the
elimination of redundant genes and ability to cope with
both over and under-spedfied genotypes, provided the
basis of the percentage ad priority representation.
The sdleded representation utimately required GA
operators capable of manipulating real-coded genes
[11] and reordering o order-based genotypes[9].

3 Land Allocation Application

The GA-based land wse planning tods are a key
component within the Land Allocation Dedsion
Support System (LADSS being developed to assst
land managers in making complex land management
dedsions.
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Figure 1. LADSS Components

LADSS has four components in addition to the GA-
based land use planning tools, (Figure 1). The
geographic information system (GIS) provides the
spatially-defined data (soils, climate and topography)
and spatia anaysis functionality required by the land
use modules and the impact asesgnents. It aso

provides useful faciliti es for the visualisation of the
GA population as a series of maps.

The land use modules make individual, field scale,
asesgnents of the suitability, productivity and
profitability for a range of land uses. These estimates
are based on biophysical data from the GIS,
management parameters (e.g. the anount of chemicals
applied to a crop) and dobal parameters (e.g. the
market price for produce). It is worth noting that the
suitability estimates are used by both the land-block
gene initiadli sation and mutation methods (Sedion 5.2)
to restrict the land alocations to those assesed as
suitable. The productivity assessmentsare dso used as
the basis for sorting land-blocks within the percentage
and priority GA allocation process(Section 4.3).

Information from individua fields is integrated for
the land management unit as a whole by the impact
assessments.  The impact assessnents are thus the
fitnessfunctions for the GA.

The graphic user interface displays maps of the land
uses all ocated hy the GA during the course of arun in
addition to the more usual GA visualisations. The use
of the mapping facilities also all ows the inclusion of a
wealth of contextua information to ad the
interpretation of the genotypes.

4  Genotype Representation

The land al ocation application requires a genotype to
encode the information needed to assgn land wses to
al land areas of interest to the planner. Three
alternative representations were examined.

4.1 Spatially explicit representation

The firg genotype representation considered was a
two-dimensional grid o genes each determining the
land use for a land parcd. The representation is
frequently employed in spatial modelling [12], and was
previously proposed, with two-dimensiona operators
by Cartwright and Harris [2]. As atiadly adjacent
land parcds are likely to have similar biophysical
conditions, and thus correlated suitability and
productivity values, it is likdy that adjacent land
parcds will form building-blocks from which an
overall solution could be wnstructed. The second
dimension of the grid-based representation, by
mirroring in the genotype the adjacency of land
parcds, minimises the disruption of the building
blocks by one- and two-point crossover operators.

The desire to use the more aggressvely exploratory
uniform crossover operator [14], enabled by adopting
an individual replacement strategy for the GA, has the
consequence of making building-block disruption
position-independent [7]. This made it posshle to
adopt a conventional one-dimensona genotype
representation with each gene representing a block of
land, to which aland use would be all ocated.

4.2 Land-block representation
This land-block representation has strong similarities
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with that successfully adopted for other multiple-
parameter optimisation problems [1]. The land-block
representation is a fixed-length, fixed-order genotype
made up of individual genes defining a parameter, in
this case the land use for a single land-block (e.g. a
field or forest compartment). Each gene is mapped to a
land-block within the DSS with the geometry of the
land-block handled by the GIS as part of the evaluation
process

The land-block representation is superior to the
spatially-explicit representations as these increase the
magnitude of the optimisation problem. For example a
farm with 100 fiedlds can be represented by a land
block genotype with 100 genes. The same 100 genes
would permit only a 10 by 10 grid over the aeaof the
enterprise. This is clealy an inadequate spatia
resolution for making land management planning
dedsions. While aquad-tree[13] representation would
mitigate the increase in the number of eements
required to represent a given land use dlocation, at an
acceptable spatial resolution, the reduction in data
structure size is bought at the expense of a significant
increasein its complexity.

The case for adopting the land-block representation
is further strengthened when one considers that the
land-blocks  refled  real world  enterprise
infrastructures, with significant capita value, and have
proven practicd utility as management units, based on
their size and biophysical characteristics. Further,
while grid-based or quad-tree # ocations can represent
an optimum solution, the trandation of these
representations into land management units is an
undesirable complication. Indeed, such a trandation
process could represent a significant optimisation
problem in its own right.

A potential limitation of the land-block
representation is its ability to cope with very large
alocation probems. As genotype length depends
direaly on the number of land-blocks to be all ocated,
and problems have previoudy been encourtered in
GAs using very long genotypes [4], there can
reasonably be expected to be a point at which the land-
block GA will fail to find acceptable solutions. The
typical size of alocation problem to date has 100
blocks and these have been successfully tackled. It
was, however, dedded to deveop a sewmnd
representation that would be largely independent of the
number of land-blocks being considered.

4.3 Percentage and priority representation

This representation encodes the percentages of land to
be al ocated to each land use and the priority, or order,
of their all ocation. Thisisreferred to as the percentage
and priority (P&P) representation and makes genotype
size dependent on the much smaller number of
prioritised landuse percentages to be allocated,
typically lessthan ten compared with 100 land-blocks.
There ae three @mponents to the representation: the
land use, the percentage and the priority. The object
classof the gene (represented as gene @lour in Figure

2) determines the land e, the percentage is set by a
red-coded parameter of the gene and the priority
determined by reading the genotypein afixed order (in
the example from top to bdtom). The ordered reading
of the genotype has some similarities with the ICIS
approach of Goldberg's messy GAs[9]. In Figure 2 the
first P&P genotype exemplifies incomplete dl ocation
(the target area percentages simming to less than
10®%) and individual land uses appeaing more than
once The genotype and gene dtructure is thus
significantly more complex than for the land-block
genotype with variable genotype length and gene
evaluation depending on gene order. This is refleded
in a substantially larger numbers of operators, Sedion
5.
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Figure 2. P& P Representation

The dlocation of land uses to spedfic land-blocks is
handled by a "greedy algorithm" inspired by Cox [3].
The genotype is first decoded into a prioritised list of
target land use percentages. The gready algorithm then
procedls to iteratively alocate land-blocks, starting
with those having the best performance per unit area
for the highest priority land use, until the required
percentage is exceaded or no land block for which the
land use is suitable remain. The algorithm then
proceals to the next highest priority land use ad
continues until either al the land wse percentages are
achieved or no land-blocks remain to be all ocated.

Whil e the gready algorithm and the P& P al ocation
combine to reduce the size of any land-allocation
problem to the number of P&P genes required to
spedfy an alocation (typically between 5 and 10), it
does introduce anumber of known biases into the
al ocations found. The gready algorithm tends to over-
alocate the higher priority land uses, as irregularly
sized land-blocks do not combine to match target
percentages. Choosing the land-block that resulted in
the best fit with the target percentage, if a number of
land-blocks with the same productivity per hedare
were available for alocation, could reduce this over-
alocation. The ordering of blocks for alocation is,
however, the primary source of bias in the allocations.
The use of productivity per hedare (Sedion 3), while
logical and cutwardly neutra as a metric for dedding
the order in which blocks are dlocated, could be



Published in Gary Petley, Alexandra Coddington and Ruth Aylet (Eds.) (1999) Procealings of the 18" Workshop of the
UK Planning and Scheduling Spedal Interest Group, Univesrity of Salford, UK, 15"-16" December 199, pp109115.

argued to hias the dlocations in favour of production
maximisation. This is acceptable for optimisations
based on ecnomic goals but may be an unacceptable
bias in an environmental optimisation, and will skew
results if economic and environmental factors were
considered in the same multiple objedive analysis. For
multiple objedive asessnents it may be appropriate to
include the ordering metric as the initid gene within
the P&P genotype. Ultimately the choice of ordering
metric(s) will be determined explicitly as part of the
parameterisation of the land- use planningtods.
Random population initialisation and subsequent
changes to gene priorities and percentages means that
there can be no guarantee that the dl ocations defined
in the genotype @an be made, for example insufficient
suitable land-blocks may remain.  Since the failure to
achieve the target percentage is deteded by the DSS it
was dedded to feed back to the GA information on the
actual alocations made, in addition to the fitness
evaluation. This dlows the post-processng of P&P
genotypes to deal with the foll owing phenomena.
Parasitic genes ocaur when the value of the
percentage attribute of a gene is revised to zero by the
DSS(for example the second Whea genein Figure 2).
Thisrevision can ocaur as there ae either no suitable,
or smply no, land-blocks remaining to be all ocated (an
example of over spedfication). These genes are termed
parastic as they can make no contribution to the
fitness of the genotype and survive only by virtue of
the fithess of the other genes in the genotype.
Genotypes containing these parasitic genes are
functionally identicd to a genotype without the
parasti ¢ genes as they result in the same dl ocation and
evaluation by the DSS The presence of these
functionally identicd genotypes is highly undesirable,
since it reduces the dfective genetic diversity of the
population with consequent dangers of premature
convergence  Zero-valued genes are thus removed
after evaluation by the DSS and before testing for
uniquenessand insertion into the population.
Functionally identical genotypes may also he
created when the percentage values held in the genes
are revised downward, by a failure to achieve the
target percentage, or upward when the land-block
all ocation exceedls the target value. When thisrevision
results in a genotype that aready exists in the
population it must be diminated. This requires a
second uniquenesstest, applied after evaluation by the
DSS
Gene pairsoccur when two genes of the same dass
thus defining the same land use to be all ocated, occur
in conseautive gene loci (for example the two Forestry
genes in Figure 2). This genotype is functionally
identicd to a genotype where the gene pair is replaced
by a single gene whose percentage is the sum of the
percentages of the gene par. The gene pairs
phenomenon is again undesirable for the same reasons
as parasitic genes. Gene pairsare combined into single
genes after the elimination of parasitic genes
Incomplete allocation of land-blocks (or under

spedfication) is dealt with by competition between
genotypes, as a complete all ocation will usually result
in a fitter genotype. There is no nead to complete the
alocation using a competitive template [9] as it is
possble to evaluate incomplete all ocations.

5 Operators

We must now define the operators that provide
appropriate exploration of the seach space defined by
the land-block and P& P representation. Table 1 shows
the operator setsfor the two representations.

Table 1. Operator sets for each representation

Type Land-block Per centage and Priority

Binary Uniform Crossover Uniform Crossover
Order Prioritised Crossover
Splice

Unary Mutation Type Mutation
Non-Uniform Mutation
Pair-Swap

Insert-Gene
Deete-Gene

5.1 Binary Operators

Both representations employ uniform crossover
[14], implemented wsing a crosover mask, with the
crosover proportion set to maximise eploratory
power [7]. This operator was chosen based on its
record as a robust, high performance operator over a
range of applications [4]. Since the P& P representation
has variable genotype length the uniform crossover is
performed only between the initid segment of the
genotypes common to bah parents.

The P& P representation al so uses an order-prioritised
crosover, (OPXO), based on uniform order-based
crosover [4]. Uniform order-based crossover is used
where permutations of gene order are significant. The
operator fird sdeds a subset of genes using a
crosover mask. Subsequently the gene subset in each
parent is reordered to the order of the eguivalent genes
in the other parent. The reordering is reative rather
than absolute. While permutations of component genes
are important to the P&P GA, only a subset of genes
will be ommon to the parent genotypes. OPXO
reorders the aommon genes to their order in the other
parent genotype.

The find binary operator is lice which
concatenates two genotypes to form a double length
genotype [9]. This provides a simple mechanism for
increasing the number of edements in a cadidate
solution. The unary operator cut usually complements
splice but isnot used with the P& P representation asit
would result primarily in partia alocations, and these
would be diminated immediately by their inability to
compete with existing completely allocated members
of the population. Reductions in genotype length do,
however, result from the dimination of parasitic genes
and gene pairs. The number of genes within genotypes
may also be modified by the unary mutation style
operators gene-insert and gene-del ete.
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5.2 Unary Operators

For the land-block representation a single mutation
operator isrequired. This replaces the arrent value of
the land use of a gene with one chosen at random from
the remaining suitable land use options.

The more mmplex P&P representation requires
operators to mutate the land use, its target percentage
and its priority. The land use is mutated by changing
the dass of the gene while preserving its position on
the genotype and its value. This is termed type-
mutation.

The target percentage is mutated using non-uniform
mutation [11] of the red-coded value of the gene. The
range of possble mutation vaues is constrained by
upper and lower bounds and a granularity parameter
carried by the individua genes. The granularity
parameter allows the accuracy of spedfication for
candidate solutions to be matched to the ability of the
DSS to discriminate between them in its evaluation.
Initial testing has used a granularity of 5%, though
finer granulariti es wil | require experimentation.

The mutation of priorities is achieved by swapping
the location of a pair of genes on the genotype. This
pair-swap is based on the 2-opt operator described by
Cox [3].

Two additional mutation operators change
genotypes: one inserts a randomly generated gene into
the genotype and the other deletes a single randomly
sdeded gene.  The insert-gene operator provides a
mechanism to increase the number of individual land
uses present in the land use plan. The ddete-gene
operator alows the promotion of lower-priority land
use percentages that may be being “blocked” from
achieving high fithess slutions by higher priority land
uses. Adaption

6 Parameterisation

In bath GAs, the operators were deployed using Davis
independent operator-based reproduction with each
offspring genotype being the product of a single
operator [4]. The probability of applying an operator
is adapted during the course of the run. Currently the
balance of operator probabilities between the binary
and unary operators is initially 0.65 to 0.35, adapting
to 0.5 to 05 over the course of the run. Where more
than one operator of a type ists, then the
probabilities are eudly divided among these
operators. The adapting o operator probabiliti es
responds bath to how far towards the maximum length
of the GA run the GA has progressed, and the number
of reproductive events that have failed to result in a
genotype making a fitnessgain. This double-adaption
resultsin a saw toath pattern of adaption ensuring that
even if the population converges well before the
maximum run length the mutation operators are
applied at the higher rate of probabiliti es before the run
terminates.

The optimum balance of operator probabiliti es will
however, require to be established by a more thorough
investigation into the parameterisation of both GAs.

7 Experimental Results

The goal of the initial testing was to establish the
relative performance of the two representations on a
typical land all ocation problem.

7.1 Test Problem

The land all ocation problem initially used to test the
GAs was a reseach station in a disadvantaged area of
the Scottish uplands. The reseach station is composed
of 66 land-blocks, and 10 possble land uses are
available. The evaluation used was the potentia
economic productivity of the reseach station (£
sterling). It should be noted that this represents a
relatively simple optimisation problem, as it includes
no impact asesgnent capable of accounting for the
spatial interactions between land-blocks. The problem
was useful as a test, however, as the global optimum
may be simply determined.

7.2 CriteriaMeasured

To compare the quality of solutions found by the land-
block and P& P GAsthe fitnessof the fittest member of
the population (MaxFit) and the mean fitness of the
population (AvgFit) was used.

To investigate the dfectiveness of the leaning by
each GA four further metrics were recmrded. These
were the number of fithess gaining events (Gain); the
number of events where no fitness gain was made
(NoGain); the number of events where reproduction
resulted in an existing genotype (Duplicates) and the
CPU used in each reproductive event. The firg three
would indicate the dfed of using the greedy algorithm
to refine the P&P genotypes. The CPU metric on the
other hand was sgnificent as the land-block
representation operates smply by looking up values
within the DSS while the P&P GA is required to
perform a series of more computationaly intensive
sorting gperations in addition to the lookups.

It was hypothesised, (based on observation of runs
during development), that while bath representations
would find acceptable solutions, the paths to those
solutions would be different. The land-block
representation GA would make a larger number of
small magnitude gains, with fewer non-gaining events,
while the P&P GA would proceed by larger magnitude
steps, but with gains made more irregularly.

7.3 Initial Results and Discussion

Figure 3 illugtrates the performance (FitMax and
FitAvg) of each GA.
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Figure 3. GA performance Graphs
Table 2 presents the mean value, over 50 runs, for the
metrics outlines in Sedion 7.2). Counts of the All,
Gain, NoGain and Dupli cates were tabulated with the
proportions of each class were dso noted. The
differences between the representations (Diff) for each
metric were @lculated and tested for significance
(Sig). A Monte-Carlo sample-difference test [12] was
used die to the skew in the distribution caused by the
fixed upper limit of fitnessvalues. The value of Sig is
the probability the differences are not significant. The
mean value for the count of CPU seconds was used to
comparethe ommputational effort expended.
Table 2. GA Performance

Metric L and-block P& P Diff Sig
M axFit £1,852000 £1,858000 -£6,000 [ 0.08
AvgFit £1,851,000 £1,846,000 £5,000 | 0.10
All 3654 1271 2383 0.00
Gain 1405 | 38% 722 | 57% 683 0.00
NoGain 1471 | 40% 174 | 14% 1297 0.00
Duplicates 778 | 21% 375 | 30% 403 0.00
CPU(sec) 3319 3630 -311 0.25

For the median value of maximum fitness bath the
P&P and land-block representations achieve 99% of
the optimum value of £1,866,000. For bath maximum
and average population-fitness the performance
differences between the two representations are not
statisticdly significant.

The smaller number of reproductive events required
to by the P&P GA to achieve these fithess values is
statisticdly significant. Therefore as differences in
average population-fitness a initidlisation are
insignificant the average fitnessgains per reproductive
cycle were as expeded, with the P&P GA making
fewer but larger gains (£850 to £1800).

Within the total event count there are further
contrasts between the two representations with the
P&P achieving fitnessgains more regularly than the
land-block GA. The @ntrast is even more marked
when comparing the NoGain event count.

While bath representations make use of DSS
suitability information to restrict initiadisation and
mutation, thus diminating a large number of low-
fitnessall ocations, the P& P GA also receves feedback
from the grealy allocation agorithm. It uses this to
repair the genotype structures and refine the target land
use percentages as noted in Sedion 4.3. The use of the

feedback mecdhanism does, however, significantly
increase the number of dupicae genotypes created
when P&P target land use percentages are reduced to
the percentage actually alocated. The number of
dudicaes is aso increased by the use of the 5%
granularity parameter for the P& P GA’starget land wse
percentages.

Despite these differences in operation, when overall
computational effort required is considered, there is no
significant difference between the two representations.
The reduced number of reproductive events for the
P&P GA being bought at the st of a balancing
increasein computational effort.

8 Conclusions

In conclusion, while bah representations find
acceptable land use dl ocation solutions, and d so by
equally efficient though dffering routes, there ae
significant contrasts that can serve as guides to their
use.

The P&P GA will be the preferred representation in
cases where the application requires a substantia
scaling up o the number of land blocks to be all ocated.
The @aveat to thisconclusion is, however, that the P& P
representation can be epeded to be sensitive to an
increase in the number of land uses being considered
asthis will increase the average length of genotype.

The land-block representation has complementary
features, being insengtive to the complexity of the
optimum solution but adversely affeded by significant
increase in the numbers of land Hocks. The land-
block representation has the further advantage that it is
more natural to use in the ontext of a multiple-
objedive search and qptimisation, as it does not
require the sorting function(s) associated with the P& P
representation.
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