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What am I writing about?  
What is the motivation for this discussion? 
What questions am I asking? 
Is this process driven or concept driven? 
What am I trying to say? 
What is the answer? 
Introduction  
(concept + process) 
 
Geostatistical methods have been 
accepted as the most representative way 
of describing the continuous nature of the 
soil. This report describes the most logical 
ways of applying the geostatistical 
methods for common use in studies of the 
spatial variation of soil properties.  
 
The emphasis will be on applying 
geostatistics for use with the Land 
Allocation Decision Support System 
(LADSS) site characterisation process. 
Work has been done on this topic 
previously by Tapping et al *****. They 
describe a method by which sampling 
methods can be refined using the 
Normalised Difference Vegetation Index 
(NDVI) value derived from multispectral 
aerial imagery. As part of this work a 
geostatistical process was also described. 
The primary need for this is the recognition 
that within field variability is a major issue 
in farm based decision support. However, 
ground based surveys are expensive, so 
remote sensing has been investigated as 
a method by which sampling could be 
made most efficient. This report will focus 
on the geostatistical methods that will 
represent within-field variability most 
efficiently.    
 
This document is structured from both a 
conceptual and process driven viewpoint. 
Initially there is a short review of the 
methods employed in the past with 
reasons why these are now obsolete. 
Then there is a conceptual description of 
the relevant methods in use presently. 
Finally there is a discussion of the 
methods directly relevant to the LADSS 
project. 
 
(“Combining Photogrammetric camera and 
IR videography to define within field soil 
sampling frameworks” J. Tapping et. al.) 
Structure of report 



Representation of Spatial 
variation in Soil   
 
There have been two principle approaches 
to representing soil variation. Discrete and 
continuous representations each have 
their own assumptions, strengths and 
weaknesses. 
 
According to Heuvelink and Webster 
(2001) the traditional method of 
characterising soil properties has been to 
breakdown the landscape into discrete 
regions, each to which a class would be 
assigned. The boundaries would be 
definite lines across regions where the 
observations suggested that the greatest 
change occurred. Inside each region it is 
assumed that the soil is of a generally 
homogenous nature. The resultant map 
would be accompanied by a text 
describing the classes. 
 
The discrete soil map can be as much to 
do with the intuition of the soil surveyor as 
any formal knowledge and understanding 
of the area. It would involve field 
observations, lab analysis and aerial 
interpretation. The observations would be 
cut to a minimum using the intuition of the 
surveyors to select representative sites. 
Sub-class variation would be an 
acknowledged feature and described 
qualitatively. 
 
Statistics entered soil classification in the 
1960’s, this did provide some 
improvements in the choropleth mapping 
process, especially if there are close 
connections between physiography and 
land cover and aerial photography is 
available. But on closer inspection this 
form of soil mapping has some 
shortcomings such as the delineation of 
subtle features, which would take a great 
deal of effort. 
 
 
 
 
 
 
Fig Example of Discrete Classification 
 
Laterally the second approach has been to 
view the soil as an ever-changing medium 
and represent it as a continuous surface. 
This method is statistically complicated 
and computationally very intensive. Kriging 

has been used for twenty years to 
describe the continuity in soil 
characteristics 
 
 
  
 
 
 
Fig Example of Continuous Classification 
 
The fundamental idea behind the 
geostatistical representation of soil is the 
concept of a regionalised variable. Where 
conventional statistical methods 
concentrate on the individual, discrete 
data points. Geostatistical methods look 
more closely at the differences in value 
and spatial location of the data points.    
 
It is assumed that, given an adequate 
population, variables exhibit a degree of 
continuity within a finite region. It is also a 
key assumption that the regionalsied 
variables are subject to a statistically 
normal distribution.  
 
Geostatistics allows measurements on 
small volumes of material to represent 
regions without bias. These samples, 
called supports, can either be small 
individual sites or they can be enlarged by 
averaging several measurements together 
or by taking several small samples and 
mixing them into a bulked sample. 
 
As mentioned above one of the 
fundamental aspects of the geostatistical 
method is the idea that at some scale, the 
properties in the soil are in some way 
positively related to each other 
(autocorrelation). As clarification of this: 
places close to each other are more 
similar than places further from each 
other.  
 
Webster and Oliver 2001 have suggested 
that geostatistical methods be used for 
three main reasons: description, 
interpretation and control.  
 
Description  
As well as classical data description 
methods (medians, variances, histograms, 
etc) geostatistical data can also be 
explored from its spatial characteristics. 
This can be done inside a sample 
variogram where variance is estimated at 
increasing distance and in several 
directions. Further insight into the nature 



of the variation can be gained through 
fitting models to reveal features. 
 
Interpretation 
The shape of the points in the variogram 
can infer much about how the soil’s 
properties change with distance or 
direction, indicating anisotropy and its 
nature. It can also indicate the quality of 
the sampling strategy.  
  
Control 
The idea of control in geostatistics 
suggests that although the spatial nature 
of the soil characteristics cannot be 
changed, our response to them can. 
 
 
 



Geostatistics in Soil 
Science  
(concept + process) 
 
This chapter will describe the geostatistical 
concepts, which will be employed in the 
soil analysis for the LADSS project. The 
focus will be on specific, implementable 
methods, however some discussion of 
major concepts is necessary. 
   
The key concepts and processes behind 
Kriging are: 
 
• Regionalised Variables, 
• Spatial Variability, 
• Semi-Variogram Analysis, and 
• Semi-Variogram Estimation. 
 

These ideas will be discussed first to 
provide a conceptual background to the 
rest of this chapter. Some of the more 
complex techniques dealing with non-
normal sample distributions and 
anisotropy will then be described. 

Regionalised Variables  
The fundamental idea behind the 
geostatistical representation of soil is the 
concept of a regionalised variable. Where 
conventional statistical methods 
concentrate on the individual, discrete 
data points. Geostatistical methods look 
more closely at the differences in value 
and spatial location of the data points, and 
the relationships in these differences.   
 
It is assumed that, given an adequate 
population, variables will exhibit a degree 
of continuity within a finite region. It is also 
a key assumption that the regionalsied 
variables are subject to a statistically 
normal distribution.  

Spatial Variability 
Geostatistical estimation (Kriging) can be 
tailored to the spatial variability of a 
regionalised variable. However the 
absolute value of point can never be 
known for sure: only an estimate can be 
made of values outside the dataset. A 
semi-variogram can provide measures of: 
• Sample variability 
• Range of influence 
• Sample adequacy 

 

Measuring Spatial Variability 
The variability of two samples (S1 and S2) 
is described by: 

2γ12 = (S1-S2)2 

 
Where:  S- samples 
             γ- variability    
 
The distance (h) is the length of the vector 
between two samples (if their orientation is 
ignored). The results of the variability can 
then be averaged over distance intervals 
(dh): 
 

2γi = 1/ni Σ (Sj-Sk)2    for  h < hjk ≤ h+dh 
 
Where nI is number of sample pairs in the 
interval. This is equal to the statistical 
variance of the sample differences. The 
semi-variogram is a plot of the semi-
variance versus distance for the sample 
population. 
 
The standard error is then: 
 

σi = √ (2γi) 
 

Which then provides a way of establishing 
uncertainty with the estimation. 

 
The γ relationship should show a general 
increase within a range then a levelling off 
or oscillation. To identify a relationship 
difference distance intervals should be 
experimented with. Intuatively samples 
close together have small differences, 
those far apart have bigger differences 
and samples at large distances can be 
expected to be independent of each other.  
 
Theoretically γ should approach zero as h 
approaches zero, however in practice 
there is a natural randomness and 
sampling error present. Mathematical 
expressions can be derived to meet these 
expectations in representing the spatial 
variability of a sample.  

Modelling Spatial Variability 
The semi-variogram relates semi-variance 
to distance. Various models can be used 
in this process. The most frequently used 
is the spherical model. 
 
 
 
 



 
 
 
 

 
 
Co is the inherent random variability of 
samples at zero distance as described 
above. This value is known as the Nugget. 
The distance a is known as the Range of 
Influence and is the distance at which 
samples become independent of each 
other. The model parameters are 
determined by interactively fitting the 
model expression to the results of semi-
variogram analysis. There are three other 
significant model types: 
 

The Exponential Model 
 
 
The Gaussian Model  
 
  
The Power Model 

a = Range γ 

 
The power model has no concept of range 
of influence. In practice it is applied over a 
limited finite distance. It is described by: 
 

γ = Co + ρSα

Where: ρ = Slope 
α = Power 

 
It is also possible to have a combination of 
models, usually incorporating the power 
model as a multiplier of sorts.  
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Estimating a Regionalised Variable 
at a Point 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this diagram, point A would provide a 
better approximation to point X's value 
than B, but B is still significant. In practice 
there will be a large number of samples 
from which to compare and as such a 
linear weighted combination of these 
sample values are used. More weight is 
given to the closer samples. The weights 
are assigned to reduce the variance. 
 
This is accomplished by substitution in the 
expression for statistical variance then 
differentiating with respect to each of the 
weights, and solving for minimum variance 
to obtain the estimation and variance 
equations: 
 
∂ / ∂wi (variance) = 0… For i = 1,2,3,…,n 

 
On condition that the weights add up to 1, 
the equations are solved to obtain the 
sample weights, then back substituted in 
the linear estimator to obtain an estimate. 
This process is called Kriging.  
 
There can a great abundance of sample 
points available for use in this process so 
it is useful to select the most relevant 
points depending on: 
• Their distribution, and 
• The Nmax closest points within range.  
 
From the variance we can derive the 
standard error, which can be used as a 
measure of uncertainty 
 
 
 

Non Normal Sample Distributions 
This describes a frequently occurring 
situation where the sample data does not 
fit the criterion of a statistically normal 
distribution. In cases such as these it may 
be difficult to discern a measurable 
relationship in the spatial variability of 
samples. It may be suitable to apply a 
transform to the samples to make them 
more amenable to analysis. A B
 
There are four commonly used transforms: 

• Log Transforms 
• Indicator Transforms 
• Rank Order Transforms X 
• Normal Scores Transforms 

 
Each is described below. 
 
Log Transforms 
This converts samples to natural log 
values, to allow the use of log-normal or 
exponential distributions. The semi-
variogram model derived from transformed 
samples can be used to estimate variation 
of logarithmic values of regionalised 
variables. To obtain variation of real 
values and anti-log back transform is 
needed. 
 
Indicator Transform 
The indicator transform answers a specific 
criterion (or query) about the samples and 
then converts the samples to a 1 or 0 
depending on the result. It provides a 
measure of probability that a point satisfies 
a specific criterion. This is an effective 
method for semi-variogram analysis if the 
population is large enough. Indicators 
cannot however be back transformed, but 
can be used to estimate the variation of 
probability of meeting a specific criterion. 
 
Rank Order Transform   
This transform sorts samples into 
ascending order and converts them into an 
integer ranking system. This is useful for 
eliminating the effects of scale in samples, 
but is only effective for semi-variogram 
analysis, not estimation. 
 
Normal Scores Transform  
The normal scores transform assumes a 
mean of 0 and standard error of 1 and 
adjusts each sample by mapping it from 
the measured culmitive frequency to the 
standard S-curve of normal distribution. 
Transformed values have a statistically 
normal distribution. This method can be 



used with semi-variogram analysis and 
estimation, since values can be back-
transformed. It is used in conjunction with 
simple Kriging for space data sets. 
 
Use of Data Transforms  
For semi-variogram analysis, any 
transform that assists in estimation of the 
spatial variability of the samples is useful. 
For estimation there is little point in using a 
transform which cannot be converted back 
to useful values.  

Semi-variogram Analysis and 
estimation with a determinate trend 
Semi-variogram analysis assumes that the 
samples of regionalised variables are not 
subject to any spatially determinate trend. 
Semi-variogram analysis and estimation is 
concerned only with the indeterminate 
component of spatial variability. If a 
determinate trend exists in the data it may 
overwhelm the semi-variogram results. 
Trends can be detected through the use of 
regression analysis. If trends are located 
they can be subtracted from the samples 
and the semi-variogram analysis applied 
to the residual values. 
 
Removing a determinate trend is similar to 
using a data transform, which allows back-
transformation. The normal estimation 
procedures are applied to the sample 
residuals, and the trend component is 
added back, to obtain the final estimated 
variation. This is called Universal Kriging.  

Analysis and estimation with 
anisotropic spatial variability 
Up to this point the assumption has been 
made that variability is independent of 
direction, isotropic. However, frequently 
variability can vary significantly with 
direction, this is called anisotropy. A 
directional control can be added to the 
semi-variogram analysis by: 
 
1. determining the orientation of sample 

pairs,  
2. separating them into subsets 

according to direction, and 
3. analysing the subsets independently 
 
The subsets are defined by azimuth and 
inclination rotations, and angular 
tolerances. The principle directions of 
anisotropy, with minimum and maximum 
ranges of influence, represent the 
anisotropic variability. The orthogonal 

ranges of influence define an ellipsoid of 
influence around a point. 
 
Anisotropy is accounted for in estimation 
by assuming the range of influence has 
elliptical variation about a point of 
estimation. 
 
Range of influence: 
 

X2/a2X + Y2/a2Y + Z2/a2Z = 0 
 

Anisotropic prediction model 
γ
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The semi-variogram model represents this 
elliptical range of influence by a range of 
influence envelope, where semi-variance 
is dependent on direction and distance. 
 
The semi-variance between estimation 
and sample is obtained from sample 
orientation, which establishes a range of 
influence and a scaled value for distance 
 
Estimation with an anisotropic sample set 
adds an extra dimension to the weighting 
process. If two samples are equidistant 
from an estimation point the point closest 
to the direction of maximum range of 
influence has less semi-variance than its 
counterpart, therefore it is assigned a 
greater weight.   

Estimation Uncertainty 
A point's estimated value is its most likely 
value based on sampled and specified 
parameters. The possible variation in 
value at a point has a statistically normal 
distribution of its own. The estimated value 
is the mean of this distribution, and the 
estimation variance is the distribution 
variance. 
 



The standard error associated with the 
estimated value defines the spread of the 
normal distribution curve. 
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Interpolation techniques 
 
 
 
 
 
 
 
 
 
 
External drift 
 
Assessment of uncertainty 
 
Stochastic simulation  
 
(Primary reference “Geostatistics in soil 
science: state of the art perspectives” 
Gooverts) 
 
(“Geostatistics for environmental 
scientists” Webster and Oliver) 
 
 



LADSS implementation  
(process) 
The LADSS problem  
Specific, needs of the project 

Software 
 
The Splus statistical package is very well 
suited to all types of statistical analysis, 
but it has the added advantage of a 
specific spatial statistics extension, which 
provides a platform for serious 
geostatistical analysis. It provides its own 
language “S” to automate tasks and 
conduct more complex analysis. Splus 
even allows a link to the ArcView GIS 
package, which together, provide a 
convenient and very powerful suite of tools 
for geostatistical analysis and estimation.  
 
This combination allows the user to 
develop maps and sample sites visually in 
ArcView, and then analyse them using 
parameterable statistical solutions inside 
Splus. Splus can also produce complex 
graphics for graphs and 3D visualisations, 
which ArcView can sometime have 
difficulty with.  
 
Practicalities with interfacing 
 

Splus and Spatial Statistics 
This description will outline the field of 
spatial statistics, discussing the major 
points, but assuming a level of 
geostatistical understanding.   
 
Exploritory data Analysis 
The initial and essential steps of 
exploratory data analysis (EDA) are easily 
conducted in Splus. The basic summary 
statistics can be accessed using the: 
 
> summary (data) 
 
command. This will provide the min, mean, 
median and max etc. In addition to this,  
the: 
 
> hist (data) 
 
command will provide a histogram of 
selected columns. These two commands 
are not explicitly spatial, and are included 
in the standard Splus library, but they are 
important for the EDA of the data set in 
question. Similarly it is possible to plot the 
relevant points on a XY grid to visually 

investigate the spatial distribution of 
points.  
 
It may also be useful to produce an 
interpolation to indicate the presence of 
any 2D trends. This can be done by using 
the: 
 
> interp.data <- Interp 
+ (x=dataX, y=dataY, z=dataZ) 
> contour (interp.data) 
> points(dataX, dataY) 
> image(interp.data) 
 
 
From the EDA it should be possible to 
identify outliers and trends in the data. It 
will also be possible to investigate the 
distribution of the points as well as the 
distribution of the values themselves.  
Especially as one of the fundamental 
ideas on which geostatistical analysis and 
estimation rests is that of a normally 
distributed data set.  
 
Variogram Estimation 
Splus uses an ‘empirical variogram’ to 
provide 
 
 
 
Variogram Fitting 
 
Ordinary and Universal Kriging 
 
Simulating Geostatistical Data 
 
 
Practicalities with interfacing 
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